scholarly journals Ivabradine-Stimulated Microvesicle Release Induces Cardiac Protection against Acute Myocardial Infarction

2020 ◽  
Vol 21 (18) ◽  
pp. 6566
Author(s):  
Rafael Ramirez-Carracedo ◽  
Laura Tesoro ◽  
Ignacio Hernandez ◽  
Javier Diez-Mata ◽  
Laura Botana ◽  
...  

Ivabradine can reduce heart rate through inhibition of the current I(f) by still unexplored mechanisms. In a porcine model of ischemia reperfusion (IR), we found that treatment with 0.3 mg/kg Ivabradine increased plasma release of microvesicles (MVs) over Placebo, as detected by flow cytometry of plasma isolated from pigs 7 days after IR, in which a tenfold increase of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) containing (both high and low-glycosylated) MVs, was detected in response to Ivabradine. The source of MVs was investigated, finding a 37% decrease of CD31+ endothelial cell derived MVs, while CD41+ platelet MVs remained unchanged. By contrast, Ivabradine induced the release of HCN4+ (mostly cardiac) MVs. While no differences respect to EMMPRIN as a cargo component were found in endothelial and platelet derived MVs, Ivabradine induced a significant release of EMMPRIN+/HCN4+ MVs by day 7 after IR. To test the role of EMMPRIN+ cardiac MVs (EMCMV), H9c2 cell monolayers were incubated for 24 h with 107 EMCMVs, reducing apoptosis, and increasing 2 times cell proliferation and 1.5 times cell migration. The in vivo contribution of Ivabradine-induced plasma MVs was also tested, in which 108 MVs isolated from the plasma of pigs treated with Ivabradine or Placebo 7 days after IR, were injected in pigs under IR, finding a significant cardiac protection by increasing left ventricle ejection fraction and a significant reduction of the necrotic area. In conclusion ivabradine induces cardiac protection by increasing at least the release of EMMPRIN containing cardiac microvesicles.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2005 ◽  
Vol 288 (3) ◽  
pp. H1359-H1366 ◽  
Author(s):  
Cherry Ballard-Croft ◽  
Gentian Kristo ◽  
Yukihiro Yoshimura ◽  
Easton Reid ◽  
Byron J. Keith ◽  
...  

Although acute adenosine preconditioning (PC) is well established, the signaling pathways mediating this cardioprotection remain unclear. Because adenosine receptor agonists activate p38 MAPK and this kinase has been implicated in ischemic and pharmacological PC, the purpose of this study was to determine the role of p38 MAPK in acute adenosine receptor PC. The role of p38 MAPK activation in discrete subcellular compartments during ischemia-reperfusion was also determined. The following groups were used in an in vivo rat ischemia-reperfusion model: 1) control (10% DMSO iv), 2) the A1/A2a adenosine receptor AMP-579 (50 μg/kg iv), 3) AMP-579 + the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 μg/kg iv), 4) AMP-579 + the p38 MAPK inhibitor SB-203580 (1 mg/kg iv), and 5) SB-203580 alone. p38 MAPK activation was measured by Western blot analysis in cytosolic, mitochondrial, membrane, and nuclear/myofilament fractions obtained from hearts at preischemic, ischemic, and reperfusion time points. A significant reduction in infarct size was observed with AMP-579 PC, an effect blocked by DPCPX or SB-203580 pretreatment. AMP-579 treatment was associated with a significant increase in p38 MAPK activation in the nuclear/myofilament fraction before ischemia, whereas no activation of this kinase occurred during ischemia or reperfusion. In contrast, p38 MAPK was activated in the mitochondrial fraction by ischemia and in the cytosolic, mitochondrial, and membrane fractions by reperfusion in the control group. SB-203580 blocked the AMP-579-induced increase in phosphorylation of the downstream p38 substrate activating transcription factor-2. These results suggest a role for p38 MAPK activation in discrete subcellular compartments in acute adenosine A1 receptor PC.


2003 ◽  
Vol 284 (1) ◽  
pp. H277-H282 ◽  
Author(s):  
Steven P. Jones ◽  
Michaela R. Hoffmeyer ◽  
Brent R. Sharp ◽  
Ye-Shih Ho ◽  
David J. Lefer

Reactive oxygen species induce myocardial damage after ischemia and reperfusion in experimental animal models. Numerous studies have investigated the deleterious effects of ischemia-reperfusion (I/R)-induced oxidant production using various pharmacological interventions. More recently, in vitro studies have incorporated gene-targeted mice to decipher the role of antioxidant enzymes in myocardial reperfusion injury. We examined the role of cellular antioxidant enzymes in the pathogenesis of myocardial I/R (MI/R) injury in vivo in gene-targeted mice. Neither deficiency nor overexpression of Cu-Zn superoxide dismutase (SOD) altered the extent of myocardial necrosis. Overexpression of glutathione peroxidase did not affect the degree of myocardial injury. Conversely, overexpression of manganese (Mn)SOD significantly attenuated myocardial necrosis after MI/R. Transthoracic echocardiography was performed on MnSOD-overexpressing and wild-type mice that were subjected to a more prolonged period of reperfusion. Cardiac output was significantly depressed in the nontransgenic but not the transgenic MnSOD-treated mice. Anterior wall motion was significantly impaired in the nontransgenic mice. These findings demonstrate an important role for MnSOD but not Cu/ZnSOD or glutathione peroxidase in mice after in vivo MI/R.


2018 ◽  
Vol 49 (5) ◽  
pp. 2060-2072 ◽  
Author(s):  
Daofeng Zheng ◽  
Zhongtang Li ◽  
Xufu Wei ◽  
Rui Liu ◽  
Ai Shen ◽  
...  

Background/Aims: Hepatic ischemia-reperfusion (I/R) injury, which is mainly induced by inflammation and unstable intracellular ions, is a major negative consequence of surgery that compromises hepatic function. However, the exact mechanisms of liver I/R injury have not been determined. Positive crosstalk with the Ca2+/CaMKII pathway is required for complete activation of the TLR4 pathway and inflammation. We previously found that miR-148a, which decreased in abundance with increasing reperfusion time, targeted and repressed the expression of CaMKIIα. In the present study, we examined the role of the miR-148a machinery in I/R-induced Ca2+/CaMKII and TLR4 signaling changes, inflammation, and liver dysfunction in vivo and in vitro. Methods: Liver function was evaluated by serum aminotransferase levels and hematoxylin-eosin (HE) staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay. Gene and protein expression were assessed by RT-PCR and western blot. Small interfering RNA was used to silence target gene expression. HE staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to measure hepatic tissue apoptosis. These assays were performed to identify factors upregulated in hepatic I/R injury and downregulated by miR-148a. Results: We manifested that expression of CaMKIIα and phosphorylation of TAK1 and IRF3 were elevated in hypoxia/reoxygenation (H/R)-treated primary Kupffer cells (KCs) and liver tissue of I/R-treated mice, but these effects were attenuated by treatment with miR-148a mimic and were accompanied by the alleviation of liver dysfunction and hepatocellular apoptosis. Luciferase reporter experiments showed that miR148a suppressed luciferase activity by almost 60%. Moreover, knockdown of CaMKIIα in H/R KCs led to significant deficiencies in p-TAK1, P-IRF3, IL-6, and TNF-α, which was consistent with the effects of miR-148a overexpression. Otherwise, the same trend of activation of TAK1 and IRF3 and inflammatory factors in vitro was observed in the siTAK1 + siIRF3 group compared with the siCaMKIIα group. Conclusion: Taken together, we conclude that miR-148a may mitigate hepatic I/R injury by ameliorating TLR4-mediated inflammation via targeting CaMKIIα in vitro and in vivo.


Stroke ◽  
2019 ◽  
Vol 50 (2) ◽  
pp. 469-477 ◽  
Author(s):  
Candela Diaz-Cañestro ◽  
Martin F. Reiner ◽  
Nicole R. Bonetti ◽  
Luca Liberale ◽  
Mario Merlini ◽  
...  

Background and Purpose— Inflammation is a major pathogenic component of ischemia/reperfusion brain injury, and as such, interventions aimed at inhibiting inflammatory mediators promise to be effective strategies in stroke therapy. JunD—a member of the AP-1 (activated protein-1) family of transcription factors—was recently shown to regulate inflammation by targeting IL (interleukin)-1β synthesis and macrophage activation. The purpose of the present study was to assess the role of JunD in ischemia/reperfusion-induced brain injury. Methods— WT (wild type) mice randomly treated with either JunD or scramble (control) siRNA were subjected to 45 minutes of transient middle cerebral artery occlusion followed by 24 hours of reperfusion. Stroke size, neurological deficit, plasma/brain cytokines, and oxidative stress determined by 4-hydroxynonenal immunofluorescence staining were evaluated 24 hours after reperfusion. Additionally, the role of IL-1β was investigated by treating JunD siRNA mice with an anti–IL-1β monoclonal antibody on reperfusion. Finally, JunD expression was assessed in peripheral blood monocytes isolated from patients with acute ischemic stroke. Results— In vivo JunD knockdown resulted in increased stroke size, reduced neurological function, and increased systemic inflammation, as confirmed by higher neutrophil count and lymphopenia. Brain tissue IL-1β levels were augmented in JunD siRNA mice as compared with scramble siRNA, whereas no difference was detected in IL-6, TNF-α (tumor necrosis factor-α), and 4-hydroxynonenal levels. The deleterious effects of silencing of JunD were rescued by treating mice with an anti–IL-1β antibody. In addition, JunD expression was decreased in peripheral blood monocytes of patients with acute ischemic stroke at 6 and 24 hours after onset of stroke symptoms compared with sex- and age-matched healthy controls. Conclusions— JunD blunts ischemia/reperfusion-induced brain injury via suppression of IL-1β.


2013 ◽  
Vol 305 (4) ◽  
pp. H446-H458 ◽  
Author(s):  
Helen E. Collins ◽  
Xiaoyuan Zhu-Mauldin ◽  
Richard B. Marchase ◽  
John C. Chatham

Store-operated Ca2+ entry (SOCE) is critical for Ca2+ signaling in nonexcitable cells; however, its role in the regulation of cardiomyocyte Ca2+ homeostasis has only recently been investigated. The increased understanding of the role of stromal interaction molecule 1 (STIM1) in regulating SOCE combined with recent studies demonstrating the presence of STIM1 in cardiomyocytes provides support that this pathway co-exists in the heart with the more widely recognized Ca2+ handling pathways associated with excitation-contraction coupling. There is now substantial evidence that STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo, and there is growing support for the contribution of SOCE to Ca2+ overload associated with ischemia/reperfusion injury. Here, we provide an overview of our current understanding of the molecular regulation of SOCE and discuss the evidence supporting the role of STIM1/Orai1-mediated SOCE in regulating cardiomyocyte function.


2015 ◽  
Vol 122 (4) ◽  
pp. 795-805 ◽  
Author(s):  
Jessica M. Olson ◽  
Yasheng Yan ◽  
Xiaowen Bai ◽  
Zhi-Dong Ge ◽  
Mingyu Liang ◽  
...  

Abstract Background: Anesthetic cardioprotection reduces myocardial infarct size after ischemia–reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. Methods: MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. Results: Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). Conclusions: The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.


2018 ◽  
Vol 314 (6) ◽  
pp. G655-G667 ◽  
Author(s):  
Zhao Lei ◽  
Meihong Deng ◽  
Zhongjie Yi ◽  
Qian Sun ◽  
Richard A. Shapiro ◽  
...  

Liver ischemia-reperfusion (I/R) injury occurs through induction of oxidative stress and release of damage-associated molecular patterns (DAMPs), including cytosolic DNA released from dysfunctional mitochondria or from the nucleus. Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) is a cytosolic DNA sensor known to trigger stimulator of interferon genes (STING) and downstream type 1 interferon (IFN-I) pathways, which are pivotal innate immune system responses to pathogen. However, little is known about the role of cGAS/STING in liver I/R injury. We subjected C57BL/6 (WT), cGAS knockout (cGAS−/−), and STING-deficient (STINGgt/gt) mice to warm liver I/R injury and that found cGAS−/− mice had significantly increased liver injury compared with WT or STINGgt/gt mice, suggesting a protective effect of cGAS independent of STING. Liver I/R upregulated cGAS in vivo and also in vitro in hepatocytes subjected to anoxia/reoxygenation (A/R). We confirmed a previously published finding that hepatocytes do not express STING under normoxic conditions or after A/R. Hepatocytes and liver from cGAS−/− mice had increased cell death and reduced induction of autophagy under hypoxic conditions as well as increased apoptosis. Protection could be restored in cGAS−/− hepatocytes by overexpression of cGAS or by pretreatment of mice with autophagy inducer rapamycin. Our findings indicate a novel protective role for cGAS in the regulation of autophagy during liver I/R injury that occurs independently of STING. NEW & NOTEWORTHY Our studies are the first to document the important role of cGAS in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that cGAS protects liver from I/R injury in a STING-independent manner.


Sign in / Sign up

Export Citation Format

Share Document