scholarly journals Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases

2020 ◽  
Vol 21 (20) ◽  
pp. 7591
Author(s):  
Emma C. Josefsson ◽  
William Vainchenker ◽  
Chloe James

Blood platelets have important roles in haemostasis, where they quickly stop bleeding in response to vascular damage. They have also recognised functions in thrombosis, immunity, antimicrobal defense, cancer growth and metastasis, tumour angiogenesis, lymphangiogenesis, inflammatory diseases, wound healing, liver regeneration and neurodegeneration. Their brief life span in circulation is strictly controlled by intrinsic apoptosis, where the prosurvival Bcl-2 family protein, Bcl-xL, has a major role. Blood platelets are produced by large polyploid precursor cells, megakaryocytes, residing mainly in the bone marrow. Together with Mcl-1, Bcl-xL regulates megakaryocyte survival. This review describes megakaryocyte maturation and survival, platelet production, platelet life span and diseases of abnormal platelet number with a focus on the role of Bcl-xL during these processes.

1981 ◽  
Vol 46 (03) ◽  
pp. 602-603 ◽  
Author(s):  
H Bessler ◽  
I Notti ◽  
M Djaldetti

SummaryThe effect of total and partial splenectomy on the number and production of circulating platelets was studied in mice. Five days after total and partial splenectomy the number of the peripheral blood platelets increased by 87% and 60%, respectively and the incorporation of 75selenium methionine (75Se-Met) into platelets was enhanced indicating that the thrombocytosis was due to increased platelet production. The results obtained by the two operative procedures were compared.Since previous work from our laboratory has shown that a factor produced by splenic lymphocytes affects the platelet number in mice, it is suggested that the differences in the number of circulating platelets observed in animals after total and partial splenectomy may reflect a difference in the number of spleen lymphocytes removed.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 550-550
Author(s):  
Emma C Josefsson ◽  
Chloé James ◽  
Katya J Henley ◽  
Marlyse A Debrincat ◽  
Kelly L Rogers ◽  
...  

Abstract Abstract 550 It is widely held that megakaryocytes undergo a specialized form of apoptosis in order to shed platelets. Conversely, it is also believed that a range of insults including chemotherapeutic agents, autoantibodies and viruses, cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. However, the apoptotic pathways that megakaryocytes possess, and the role they play in survival and platelet production are ill-defined. We recently demonstrated that platelets contain a classical intrinsic mitochondrial apoptosis pathway that regulates their life span in vivo. The key components of this pathway are the Bcl-2 family pro-survival protein Bcl-xL, and pro-death Bak and Bax. Deletion of Bak and Bax—the gatekeepers of the intrinsic pathway—blocks platelet apoptosis in response to genetic mutation or pharmacological insult, and significantly extends circulating platelet life span. To elucidate the role of the intrinsic apoptosis pathway in megakaryocytes, we generated both hematopoietic- and megakaryocyte lineage-specific deletions of Bak and Bax in mice. Surprisingly, we found that the ability of Bak−/−Bax−/− animals to produce platelets, both at steady state and under conditions of thrombopoietic stress, was unperturbed. Megakaryocyte numbers, morphology and ploidy were normal. Bak−/−Bax−/− megakaryocytes cultured in vitro showed no impairment of pro-platelet formation. Thus, classical intrinsic apoptosis is not required by megakaryocytes for the process of platelet shedding. Given that in platelets, Bak and Bax must be kept in check to maintain survival, we reasoned that the same might be true of megakaryocytes. If so, then it would be expected that one or more members of the Bcl-2 family of pro-survival proteins restrain Bak and Bax. Since Bcl-xL fulfills this role in platelets, we generated mice lacking Bcl-xL in the megakaryocyte lineage. Platelet counts in Bcl-xPf4CΔ/Pf4CΔ animals were approximately 2% of those observed in Bcl-xfl/fl littermates. Platelet life span was reduced to 5 hours, versus 5 days in controls, underscoring the requirement for Bcl-xL in mediating platelet survival. In addition, reticulated platelet analyses combined with mathematical modeling suggested that Bcl-xPf4CΔ/Pf4CΔ mice had an underlying platelet production defect. Further examination revealed that megakaryocyte numbers were significantly increased in both the bone marrow and spleen of Bcl-xPf4CΔ/Pf4CΔ animals relative to Bcl-xfl/fl controls. Megakaryocyte progenitor numbers were doubled, and serum TPO levels were dramatically reduced, indicating a megakaryocyte compartment under considerable thrombopoietic stress. In vitro cultures confirmed that Bcl-xPf4CΔ/Pf4CΔ megakaryocytes were able to develop and mature. Strikingly, however, at the point of pro-platelet formation, they underwent an abortive attempt to generate extensions and died. Death was accompanied by a dramatic increase in apoptotic effector caspase activity. This suggested that, like platelets, megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained in order to survive, and that Bcl-xL is the factor that does so during pro-platelet formation and platelet shedding. To establish whether Bak and Bax can mediate megakaryocyte death, we examined the effect on mature wild type megakaryocytes of three pharmacological agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and a BH3 mimetic that inhibits Bcl-xL, Bcl-2 and Bcl-w. All three triggered mitochondrial damage, caspase activation and cell death. Remarkably, genetic deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and the BH3 mimetic, but not staurosporine. Our results demonstrate that megakaryocytes can undergo classical Bak- and Bax-mediated apoptotic death. They do not activate the intrinsic pathway to facilitate platelet shedding, rather, the opposite is true: they must restrain it in order to survive and generate platelets. These findings offer a potential mechanism for the death of megakaryocytes in response to insults such as cancer chemotherapy. They also suggest that additional megakaryocyte cell death pathways remain to be elucidated. Disclosures: Roberts: Abbott: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 389-389
Author(s):  
Emma C. Josefsson ◽  
Deborah L. Burnett ◽  
Marlyse A. Debrincat ◽  
Katya J. Henley ◽  
Rachael M. Lane ◽  
...  

Abstract Abstract 389 The survival of megakaryocytes and platelets is regulated by the intrinsic apoptosis pathway. Both cell types express Bak and Bax, the essential mediators of intrinsic apoptosis, which must be kept in check for cellular viability to be maintained. In platelets, Bak and Bax are restrained by the pro-survival protein Bcl-xL. Mutations that reduce the pro-survival activity of Bcl-xL cause dose-dependent cell-intrinsic reductions in circulating platelet life span in mice. Accordingly, pharmacological blockade of Bcl-xL with the BH3 mimetic drugs ABT-737 or ABT-263 (Navitoclax) triggers platelet death and thrombocytopenia in mice, dogs and humans. In mice, loss of Bak and Bax almost doubles platelet life span, and renders platelets refractory to the effects of ABT-737. In megakaryocytes, we and others have recently demonstrated that Bcl-xLand its pro-survival relative Mcl-1 are essential for restraint of the intrinsic apoptosis pathway. Their loss triggers Bak/Bax-mediated death. Conversely, ablation of Bak and Bax can protect megakaryocytes from acute apoptotic insults, such as treatment with carboplatin. Combined with the fact that platelet production is normal in the absence of Bak and Bax, these studies have brought into question the long-standing theory that megakaryocytes deliberately undergo apoptosis in order to shed platelets. However, whilst it is clear that the intrinsic apoptosis pathway is not required for thrombopoiesis, the role of the extrinsic pathway—the other major route to apoptotic cell death—has not been established. In the current study we examined the functionality of, and physiological requirement for, the extrinsic apoptosis pathway in megakaryocytes and platelets. The extrinsic pathway is triggered when members of the tumor necrosis factor (TNF) superfamily such as Fas ligand (FasL) bind to cell surface death receptors (e.g. Fas). This induces receptor multimerization, recruitment of death domain adaptor proteins (e.g. FADD) and subsequent activation of Caspase-8, which is the essential mediator of extrinsic pathway-mediated cell death. We found that both megakaryocytes and platelets express critical components of the pathway, including FADD, Caspase-8 and Bid. Megakaryocytes, but not platelets, also expressed the death receptor Fas. Mature fetal liver-derived megakaryocytes treated with soluble FasL exhibited activation of Caspase-8 and the effector Caspases-3/7. This was accompanied by mitochondrial damage and a failure of pro-platelet formation. To establish the requirement for the extrinsic pathway in megakaryocyte development and platelet production, we conditionally deleted Caspase-8 from the megakaryocyte lineage. Platelet counts and platelet life span in Casp8Pf4Δ/Pf4Δ mice were indistinguishable from those of wild-type littermates. Megakaryocyte numbers, morphology, ploidy and in vitro pro-platelet formation capacity were also normal. Caspase-8-deficient megakaryocytes were resistant to FasL treatment. Casp8Pf4Δ/Pf4Δ animals responded to experimentally-induced thrombocytopenia in a manner similar to wild-type. Collectively, these data indicate that the extrinsic apoptosis pathway is dispensable for the generation and survival of platelets. To examine any potential redundancy between the extrinsic and intrinsic apoptosis pathways, we generated Bak−/−BaxPf4Δ/Pf4ΔCasp8Pf4Δ/Pf4Δ triple knockout mice. The ability of these animals to produce platelets, both at steady state and under conditions of thrombopoietic stress, was unperturbed. Megakaryocyte numbers and morphology were normal. Thus, platelet shedding by megakaryocytes does not require the intrinsic or extrinsic apoptosis pathways. Together with recent work demonstrating that the apoptotic initiator caspase, Caspase-9, is also dispensable for platelet production, we conclude that platelet biogenesis is not an apoptotic process. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (16) ◽  
pp. 1877-1884 ◽  
Author(s):  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Hervé Falet ◽  
Karin M. Hoffmeister

Abstract The human body produces and removes 1011 platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.


1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


1993 ◽  
Vol 70 (04) ◽  
pp. 676-680 ◽  
Author(s):  
H F Kotzé ◽  
V van Wyk ◽  
P N Badenhorst ◽  
A du P Heyns ◽  
J P Roodt ◽  
...  

SummaryPlatelets were isolated from blood of baboons and treated with neuraminidase to remove platelet membrane sialic acid, a process which artificially ages the platelets. The platelets were then labelled with 111In and their mean life span, in vivo distribution and sites of Sequestration were measured. The effect of removal of sialic acid on the attachment of immunoglobulin to platelets were investigated and related to the Sequestration of the platelets by the spleen, liver, and bone marrow. Removal of sialic acid by neuraminidase did not affect the aggregation of platelets by agonists in vitro, nor their sites of Sequestration. The removal of 0.51 (median, range 0.01 to 2.10) nmol sialic acid/108 platelets shortened their life span by 75 h (median, range 0 to 132) h (n = 19, p <0.001), and there was an exponential correlation between the shortening of the mean platelet life span and the amount of sialic acid removed. The increase in platelet-associated IgG was 0.112 (median, range 0.007 to 0.309) fg/platelet (n = 25, p <0.001) after 0.79 (median, range 0.00 to 6.70) nmol sialic acid/108 platelets was removed (p <0.001). There was an exponential correlation between the shortening of mean platelet life span after the removal of sialic acid and the increase in platelet-associated IgG. The results suggest that platelet membrane sialic acid influences ageing of circulating platelets, and that the loss of sialic acid may have exposed a senescent cell antigen that binds IgG on the platelet membrane. The antibody-antigen complex may then provide a signal to the macrophages that the platelet is old, and can be phagocytosed and destroyed.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


2019 ◽  
Vol 25 (27) ◽  
pp. 2909-2918 ◽  
Author(s):  
Joanna Giemza-Stokłosa ◽  
Md. Asiful Islam ◽  
Przemysław J. Kotyla

Background:: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. Methods:: Different electronic databases were searched in a non-systematic way to find out the literature of interest. Results:: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. Conclusion:: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.


Sign in / Sign up

Export Citation Format

Share Document