scholarly journals Human Isogenic Cell Line Models for Neutrophils and Myeloid-Derived Suppressor Cells

2020 ◽  
Vol 21 (20) ◽  
pp. 7709
Author(s):  
Yuting Zhang ◽  
Emily Wilt ◽  
Xin Lu

Neutrophils with immunosuppressive activity are polymorphonuclear myeloid-derived suppressor cells (MDSCs) and may contribute to the resistance to cancer immunotherapy. A major gap for understanding and targeting these cells is the paucity of cell line models with cardinal features of human immunosuppressive neutrophils and their normal counterparts, especially in an isogenic manner. To address this issue, we employ the human promyelocytic cell line HL60 and use DMSO and cytokines (granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin 6 (IL6)) to induce the formation of either neutrophils or MDSCs. The induced MDSCs are CD11b+ CD33+ HLA-DR−/low and are heterogeneous for CD15 and CD14 expression. The induced MDSCs abrogate IL2 production and activation-induced cell death of the human T cell line Jurkat stimulated by CD3/CD28 antibodies, whereas the induced neutrophils enhance IL2 production from Jurkat cells. The induced MDSCs upregulate the expression of C/EBPβ, STAT3, VEGFR1, FATP2 and S100A8. Lastly, the immunosuppressive activity of the induced MDSCs is inhibited by all-trans retinoic acid and STAT3 inhibitor BP-1-102 through cellular differentiation and dedifferentiation mechanisms, respectively. Together, our study establishes a human isogenic cell line system for neutrophils and MDSCs and this system is expected to facilitate future studies on the biology and therapeutics of human immunosuppressive neutrophils.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Luis Carvajal ◽  
Luciana Gneo ◽  
Carmela De Santo ◽  
Matt Perez ◽  
Tracy Garron ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) accumulate in the blood and tumor microenvironment (TME) and suppress anti-tumor immune responses.1 Cancer cells express the granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives MDSC differentiation and function.2 3 4 It is upregulated in several cancers, including mesothelioma, pancreatic and colorectal, and it is linked to higher levels of intra-tumoral MDSCs and poorer overall survival.2 4 5 In animal models, knockdown of GM-CSF in pancreatic epithelium or pancreatic mesenchymal stem cells inhibits tumorigenesis, reduces intra-tumor MDSCs and enhances CD8+ T cell accumulation.6 7 8 Therefore, targeting the GM-CSF receptor alpha (GM-CSFRα) on MDSCs is an attractive strategy to restore anti-tumor immunity. Mavrilimumab is a clinical stage fully human monoclonal antibody that blocks GM-CSFRα. It has demonstrated efficacy and acceptable safety profile in patients with rheumatoid arthritis, and it’s currently undergoing investigation in phase II studies in giant cell arteritis and in patients with severe COVID-19 pneumonia and hyper-inflammation (NCT03827018, NCT04397497, respectively). The present study investigates its potential as a therapeutic strategy to target MDSCs in the TME as an adjuvant to immunotherapy.MethodsCancer cell supernatants were collected when cells reached confluency. Human GM-CSF was measured by ELISA. Healthy donor CD14+ monocytes were incubated (± mavrilimumab) with cancer cell supernatants for either 3 or 6 days followed by phenotypic analysis (CD14, CD33, HLA-DR, CD11b, CD206, CD80, PD-L1, Arginase-1) by flow cytometry. On day 3, autologous CD3+ T cells were stimulated with CD3/CD28 and IL-2 and co-cultured with putative MDSCs for 5 days. T-cell proliferation was evaluated by measuring carboxyfluorescein succinimidyl ester (CFSE) dilution in CD4+ and CD8+ T cells by flow cytometry.ResultsGM-CSF is expressed in the supernatant of cancer cell lines (HCT116, SW-480, Panc-1, Capan-1). Human monocytes cultured with conditioned medium from colorectal carcinoma (SW-480) or pancreatic adenocarcinoma (Capan-1) show downregulation of HLA-DR, increased expression of PD-L1, Arg-1, CD206, and can suppress T-cell proliferation in-vitro. Similarly, peripheral blood monocytes purified from pancreatic cancer patients suppress T-cell proliferation ex-vivo. Notably, Mavrilimumab inhibits the polarization of healthy donor monocytes to M-MDSCs and restores T-cell proliferation.ConclusionsTargeting of GM-CSFRα with mavrilimumab may alleviate the pro-tumorigenic and immunosuppressive functions of MDSCs in the TME. Future clinical studies should evaluate whether targeting of the GM-CSFRα in combination with immune checkpoint inhibitors is a viable therapeutic option to bolster their efficacy.Ethics ApprovalThe study was approved by the Institute of Immunology and Immunotherapy, University of Birmingham, UK Ethics Board. Healthy volunteer human material was obtained from commercial sources and approved by Stemexpress Institutional Review Board (IRB).ReferencesLaw AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9(3):561.Khanna S, Graef S, Mussai F, et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018;24(12):2859–2872.Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010;40(1):22–35.Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015;75(13):2629–2640.Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017;7(1):8265.Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21(6):822–835.Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21(6):836–847.Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 2016;6(8):886–899.


Nephron ◽  
2021 ◽  
pp. 1-11
Author(s):  
Jiawei Ji ◽  
Yuan Zhuang ◽  
Zhemin Lin ◽  
Yihang Jiang ◽  
Wei Wang ◽  
...  

<b><i>Objective:</i></b> Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells which can suppress T-cell functionality. Herein, we evaluated the functional importance of MDSCs in the context of kidney ischemia-reperfusion injury (IRI) and explored their ability to regulate innate and adaptive immune cell function in this context. <b><i>Methods:</i></b> The differentiation of MDSCs was induced in vitro by treating cells with GM-CSF and interferon (IFN)-γ. In a murine model of renal IRI, serum creatinine and blood urea nitrogen values were measured to monitor kidney function, while histopathological and immunohistochemical approaches were used to assess kidney injury severity. In addition, flow cytometry was employed to assess the phenotypes and apoptosis of kidney cells in these mice. <b><i>Results:</i></b> MDSCs induced by treatment with GM-CSF + IFN-γ could suppress T-cell functionality in vitro<i>.</i> The adoptive transfer of these MDSCs into an IRI mouse model system enhanced kidney damage and impaired renal function following the recruitment of these cells to renal tissues in these mice. Following such adoptive transfer, the relative frequency of MDSCs with a CD11b<sup>+</sup>Ly6G<sup>−</sup>Ly6C<sup>high</sup> monocytic-MDSC phenotype decreased, whereas cells with a CD11b<sup>+</sup>Ly6G<sup>+</sup>Ly6C<sup>low</sup> polymorphonuclear-MDSC phenotype become more prevalent within kidney tissues following IRI. Adoptive transfer also coincided with increased frequencies of macrophages and dendritic cells (DCs) in the kidney tissues. This suggested that M-MDSCs contributed to early-stage renal IRI damage by differentiating into these deleterious cell types. However, MDSC-induced suppression of CD4<sup>+</sup> and CD8<sup>+</sup> T-cell infiltration was not sufficient to prevent the deterioration of renal function in these mice. <b><i>Conclusions:</i></b> Herein, we successfully developed a protocol wherein MDSCs were differentiated in vitro through combination GM-CSF/IFN-γ treatment. When these MDSCs were subsequently adoptively transferred into a murine model of renal IRI, they aggravated kidney damage, likely owing to the differentiation of M-MDSCs into deleterious macrophages and DCs.


1988 ◽  
Vol 8 (12) ◽  
pp. 5581-5587
Author(s):  
S Miyatake ◽  
M Seiki ◽  
M Yoshida ◽  
K Arai

Activation of T cells by an antigen, a mitogen, or a combination of a phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA]) and a calcium ionophore (A23187) leads to induction of a set of lymphokine genes. Treatment of human T-cell leukemia line Jurkat by a mitogen or p40x, a transactivator protein encoded by human T-cell leukemia virus type I, activates many transfected lymphokine genes in a transient transfection assay. To study the mechanism of lymphokine gene induction, we examined the effects of mitogen stimulation and p40x on the gene for the mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) in Jurkat cells. Deletion and mutation analyses showed that the 5'-flanking region of the gene for the GM-CSF is composed of two types of regulatory elements. One sequence, located at positions -95 to -73, determines response to stimulation by either TPA-A23187 or p40x. This region contains conserved lymphokine element 2, which appears in the gene for interleukin 3 (IL-3) and is followed by a GC-rich stretch. This GC-rich stretch alone specifies inducible response to p40x but not to TPA-A23187. Another sequence, located at positions -113 to -96 upstream of a TATA-like sequence, mediates inducible response to p40x but not to TPA-A23187. This sequence includes conserved lymphokine element 1, which appears in several lymphokine-cytokine genes, such as those for IL-3, G-CSF, and IL-2. We previously showed that the simian virus 40 early region promoter was also induced by a mitogen or p40x in Jurkat cells. Deletion analysis showed that the minimum region require for stimulation by both signals are identical. These results, which indicate that p40(x) stimulates transcription of the gene for the GM-CSF or the simian virus 40 early region promoter through the same DNA element or an overlapping DNA element required for induction by a mitogen, lend further support to the notion that p40(x) can exert its function by activating a component(s) of the T-cell signal transduction pathway which is activated by an antigen or a mitogen.


Author(s):  
Shota Uesugi ◽  
Mayuka Hakozaki ◽  
Yuko Kanno ◽  
Honoka Takahashi ◽  
Yui Kudo ◽  
...  

Abstract Ca2+ signaling is related to various diseases such as allergies, diabetes, and cancer. We explored Ca2+ signaling inhibitors in natural resources using a yeast-based screening method, and found bakkenolide B from the flower buds of edible wild plant, Petasites japonicus, using the YNS17 strain (zds1Δ erg3Δ pdr1/3Δ). Bakkenolide B exhibited growth-restoring activity against the YNS17 strain and induced Li+ sensitivity of wild-type yeast cells, suggesting that it inhibits the calcineurin pathway. Additionally, bakkenolide B inhibited interleukin-2 production at gene and protein levels in Jurkat cells, a human T cell line, but not the in vitro phosphatase activity of human recombinant calcineurin, an upstream regulator of interleukin-2 production. Furthermore, bakkenolide A showed weak activity in YNS17 and Jurkat cells compared with bakkenolide B. These findings revealed new biological effects and the structure-activity relationships of bakkenolides contained in Petasites japonicus as inhibitors of interleukin-2 production in human T cells.


Sign in / Sign up

Export Citation Format

Share Document