isogenic cell line
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 14)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ashley L Cook ◽  
Nicolas Wyhs ◽  
Surojit B Sur ◽  
Blair Ptak ◽  
Maria Popoli ◽  
...  

We describe the creation and characterization of an isogenic cell line panel representing common cancer pathways, with multiple features optimized for high-throughput screening. More than 1,800 cell lines from three normal human cells were generated using CRISPR-technologies. Surprisingly, we discovered most of these lines did not result in complete gene inactivation, despite integration of sgRNA at the desired genomic site. However, a subset of the lines harbored true, biallelic disruptions of the targeted tumor suppressor gene, yielding a final panel of 100 well-characterize lines covering 19 pathways frequently subject to loss of function in cancers. This panel included genetic markers optimized for sequence-based ratiometric assays for drug-based screening assays. To illustrate the potential utility of this panel, we developed a multiplexed high-throughput screen that identified Wee1 inhibitor MK-1775 as a selective growth inhibitor of cells with inactivation of TP53. These cell lines and screening approach should prove useful for researchers studying a variety of cellular and biochemical phenomena.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Keiji Kawatani ◽  
Toshihiko Nambara ◽  
Nobutoshi Nawa ◽  
Hidetaka Yoshimatsu ◽  
Haruna Kusakabe ◽  
...  

AbstractAstrocytes exert adverse effects on the brains of individuals with Down syndrome (DS). Although a neurogenic-to-gliogenic shift in the fate-specification step has been reported, the mechanisms and key regulators underlying the accelerated proliferation of astrocyte precursor cells (APCs) in DS remain elusive. Here, we established a human isogenic cell line panel based on DS-specific induced pluripotent stem cells, the XIST-mediated transcriptional silencing system in trisomic chromosome 21, and genome/chromosome-editing technologies to eliminate phenotypic fluctuations caused by genetic variation. The transcriptional responses of genes observed upon XIST induction and/or downregulation are not uniform, and only a small subset of genes show a characteristic expression pattern, which is consistent with the proliferative phenotypes of DS APCs. Comparative analysis and experimental verification using gene modification reveal dose-dependent proliferation-promoting activity of DYRK1A and PIGP on DS APCs. Our collection of human isogenic cell lines provides a comprehensive set of cellular models for further DS investigations.


2021 ◽  
Author(s):  
Suleman S Hussain ◽  
Rahul Majumdar ◽  
Grace M Moore ◽  
Himanshi Narang ◽  
Erika S Buechelmaier ◽  
...  

Abstract Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.


2021 ◽  
pp. clincanres.3605.2020
Author(s):  
Igor Odintsov ◽  
Allan JW Lui ◽  
Whitney J. Sisso ◽  
Eric G Gladstone ◽  
Zebing Liu ◽  
...  

2021 ◽  
Author(s):  
G Gambardella ◽  
G Viscido ◽  
B Tumaini ◽  
A Isacchi ◽  
R Bosotti ◽  
...  

ABSTRACTBrest Cancer (BC) patient stratification is mainly driven by receptor status and histological grading and subtyping, with about twenty percent of patients for which absence of any actionable biomarkers results in no clear therapeutic intervention to apply. Here, we evaluated the potentiality of single-cell transcriptomics for automated diagnosis and drug treatment of breast cancer. We transcriptionally profiled 35,276 individual cells from 32 BC cell-lines covering all main BC subtypes to yield a Breast Cancer Single Cell Atlas. We show that single cell transcriptomics can successfully detect clinically relevant BC biomarkers and that atlas can be used to automatically predict cancer subtype and composition from a patient’s tumour biopsy. We found that BC cell lines arbour a high degree of heterogeneity in the expression of clinically relevant BC biomarkers and that such heterogeneity enables cells with differential drug sensitivity to co-exist even within a genomically stable isogenic cell line. Finally, we developed a novel bioinformatics approach named DREEP (DRug Estimation from Expression Profiles) to automatically predict responses to more than 450 anticancer agents starting from single-cell transcriptional profiles. We validated DREEP both in-silico and in-vitro by selectively inhibiting the growth of the HER2-deficient subpopulation in the MDAMB361 cell line. Our work shows transcriptional heterogeneity is common, dynamic and plays a relevant role in determining drug sensitivity. Moreover, our Breast Cancer Single Cell Atlas and DREEP approach are a unique resource for the BC research community and to advance the use of single-cell sequencing in the clinics.


2021 ◽  
Author(s):  
Ashley L. Cook ◽  
Nicolas A. Wyhs ◽  
Surojit Sur ◽  
Blair Ptak ◽  
Maria Popoli ◽  
...  

2020 ◽  
Author(s):  
Thomas F. Eleveld ◽  
Chaimaa Bakali ◽  
Paul P. Eijk ◽  
Phylicia Stathi ◽  
Pino J Poddighe ◽  
...  

AbstractArm-level chromosomal deletions are a prevalent and defining feature of cancer. A high degree of tumor-type and subtype specific recurrencies suggest a selective oncogenic advantage. However, due to their large size it has been difficult to pinpoint the oncogenic drivers that confer this advantage. Suitable functional genomics approaches to study the oncogenic driving capacity of arm-level deletions are limited. Here we present an effective technique to engineer arm-level deletions by CRISPR-Cas9 and create isogenic cell line models. We simultaneously induce double-strand breaks (DSBs) at two ends of a chromosomal arm and select the cells that have lost the intermittent region. Using this technique, we induce arm-level deletions on chromosome 11q (65 MB) and chromosome 6q (53 MB) in neuroblastoma cell lines. Such isogenic models enable further research on the role of arm-level deletions in tumor development and growth and their possible therapeutic potential.


2020 ◽  
Vol 21 (21) ◽  
pp. 8025
Author(s):  
Cristabelle De Souza ◽  
Jill A. Madden ◽  
Dennis Minn ◽  
Vigneshwari Easwar Kumar ◽  
Dennis J. Montoya ◽  
...  

High-grade serous carcinoma (HGSC), the most lethal subtype of epithelial ovarian cancer (EOC), is characterized by widespread TP53 mutations (>90%), most of which are missense mutations (>70%). The objective of this study was to investigate differential transcriptional targets affected by a common germline P72R SNP (rs1042522) in two p53 hotspot mutants, R248Q and R248W, and identify the mechanism through which the P72R SNP affects the neomorphic properties of these mutants. Using isogenic cell line models, transcriptomic analysis, xenografts, and patient data, we found that the P72R SNP modifies the effect of p53 hotspot mutants on cellular morphology and invasion properties. Most importantly, RNA sequencing studies identified CXCL1 a critical factor that is differentially affected by P72R SNP in R248Q and R248W mutants and is responsible for differences in cellular morphology and functional properties observed in these p53 mutants. We show that the mutants with the P72 SNP promote a reversion of the EMT phenotype to epithelial characteristics, whereas its R72 counterpart promotes a mesenchymal transition via the chemokine CXCL1. These studies reveal a new role of the P72R SNP in modulating the neomorphic properties of p53 mutants via CXCL1, which has significant implications for tumor invasion and metastasis.


2020 ◽  
Vol 21 (20) ◽  
pp. 7709
Author(s):  
Yuting Zhang ◽  
Emily Wilt ◽  
Xin Lu

Neutrophils with immunosuppressive activity are polymorphonuclear myeloid-derived suppressor cells (MDSCs) and may contribute to the resistance to cancer immunotherapy. A major gap for understanding and targeting these cells is the paucity of cell line models with cardinal features of human immunosuppressive neutrophils and their normal counterparts, especially in an isogenic manner. To address this issue, we employ the human promyelocytic cell line HL60 and use DMSO and cytokines (granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin 6 (IL6)) to induce the formation of either neutrophils or MDSCs. The induced MDSCs are CD11b+ CD33+ HLA-DR−/low and are heterogeneous for CD15 and CD14 expression. The induced MDSCs abrogate IL2 production and activation-induced cell death of the human T cell line Jurkat stimulated by CD3/CD28 antibodies, whereas the induced neutrophils enhance IL2 production from Jurkat cells. The induced MDSCs upregulate the expression of C/EBPβ, STAT3, VEGFR1, FATP2 and S100A8. Lastly, the immunosuppressive activity of the induced MDSCs is inhibited by all-trans retinoic acid and STAT3 inhibitor BP-1-102 through cellular differentiation and dedifferentiation mechanisms, respectively. Together, our study establishes a human isogenic cell line system for neutrophils and MDSCs and this system is expected to facilitate future studies on the biology and therapeutics of human immunosuppressive neutrophils.


Sign in / Sign up

Export Citation Format

Share Document