scholarly journals Characterization of PC12 Cell Subclones with Different Sensitivities to Programmed Thermal Stimulation

2020 ◽  
Vol 21 (21) ◽  
pp. 8356
Author(s):  
Tada-aki Kudo ◽  
Kanako Tominami ◽  
Satoshi Izumi ◽  
Yohei Hayashi ◽  
Takuya Noguchi ◽  
...  

Neuritogenesis is the process underling nervous system regeneration; however, optimal extracellular signals that can promote neuronal regenerative activities require further investigation. Previously, we developed a novel method for inducing neuronal differentiation in rat PC12 cells using temperature-controlled repeated thermal stimulation (TRTS) with a heating plate. Based on neurogenic sensitivity to TRTS, PC12 cells were classified as either hyper- or hyposensitive. In this study, we aimed to investigate the mechanism of hyposensitivity by establishing two PC12-derived subclones according to TRTS sensitivity during differentiation: PC12-P1F1, a hypersensitive subclone, and PC12-P1D10, a hyposensitive subclone. To characterize these subclones, cell size and neuritogenesis were evaluated in subclones treated with nerve growth factor (NGF), bone morphogenetic protein (BMP), or various TRTS. No significant differences in cell size were observed among the parental cells and subclones. BMP4- or TRTS-induced neuritogenesis was increased in PC12-P1F1 cells compared to that in the parental cells, while no neuritogenesis was observed in PC12-P1D10 cells. In contrast, NGF-induced neuritogenesis was observed in all three cell lines. Furthermore, a BMP inhibitor, LDN-193189, considerably inhibited TRTS-induced neuritogenesis. These results suggest that the BMP pathway might be required for TRTS-induced neuritogenesis, demonstrating the useful aspects of these novel subclones for TRTS research.

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124024 ◽  
Author(s):  
Tada-aki Kudo ◽  
Hiroyasu Kanetaka ◽  
Kentaro Mochizuki ◽  
Kanako Tominami ◽  
Shoko Nunome ◽  
...  

Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


2021 ◽  
Author(s):  
Wei Ji ◽  
Wenmei Ao ◽  
Mengqiu Sun ◽  
Chunlai Feng ◽  
Yun Wang

The aim of the present work was to develop a novel method integrating two-step aqueous two-phase extraction and temperature-controlled affinity precipitation for the separation and purification horseradish peroxidase (HRP) from...


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1807
Author(s):  
Rocío Guerle-Cavero ◽  
Blanca Lleal-Fontàs ◽  
Albert Balfagón-Costa

In 2023, new legislation will ban the use of animals in the cosmetic industry worldwide. This fact, together with ethical considerations concerning the use of animals or humans in scientific research, highlights the need to propose new alternatives for replacing their use. The aim of this study is to create a tri-layered chitosan membrane ionically crosslinked with sodium tripolyphosphate (TPP) in order to simulate the number of layers in human skin. The current article highlights the creation of a membrane where pores were induced by a novel method. Swelling index, pore creation, and mechanical property measurements revealed that the swelling index of chitosan membranes decreased and, their pore formation and elasticity increased with an increase in the Deacetylation Grade (DDA). Additionally, the results demonstrate that chitosan’s origin can influence the elastic modulus value and reproducibility, with higher values being obtained with seashell than snow crab or shrimp shells. Furthermore, the data show that the addition of each layer, until reaching three layers, increases the elastic modulus. Moreover, if layers are crosslinked, the elastic modulus increases to a much greater extent. The characterization of three kinds of chitosan membranes was performed to find the most suitable material for studying different human skin properties.


2013 ◽  
Vol 205-206 ◽  
pp. 284-289 ◽  
Author(s):  
David Lysáček ◽  
Petr Kostelník ◽  
Petr Pánek

We report on a novel method of low pressure chemical vapor deposition of polycrystalline silicon layers used for external gettering in silicon substrate for semiconductor applications. The proposed method allowed us to produce layers of polycrystalline silicon with pre-determined residual stress. The method is based on the deposition of a multilayer system formed by two layers. The first layer is intentionally designed to have tensile stress while the second layer has compressive stress. Opposite sign of the residual stresses of the individual layers enables to pre-determine the residual stress of the gettering stack. We used scanning electron microscopy for structural characterization of the layers and intentional contamination for demonstration of the gettering properties. Residual stress of the layers was calculated from the wafer curvature.


Sign in / Sign up

Export Citation Format

Share Document