scholarly journals Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal

2021 ◽  
Vol 22 (2) ◽  
pp. 481
Author(s):  
Fernando Aleixandre-Carrera ◽  
Nurit Engelmayer ◽  
David Ares-Suárez ◽  
María del Carmen Acosta ◽  
Carlos Belmonte ◽  
...  

Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.

2017 ◽  
Vol 312 (6) ◽  
pp. G635-G648 ◽  
Author(s):  
Dafne Balemans ◽  
Guy E. Boeckxstaens ◽  
Karel Talavera ◽  
Mira M. Wouters

Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1401
Author(s):  
Katharina E. M. Hellenthal ◽  
Laura Brabenec ◽  
Eric R. Gross ◽  
Nana-Maria Wagner

The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.


Cell Calcium ◽  
2017 ◽  
Vol 67 ◽  
pp. 138-147 ◽  
Author(s):  
Viktoria Götz ◽  
Sen Qiao ◽  
Andreas Beck ◽  
Ulrich Boehm

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 753 ◽  
Author(s):  
Ravinder Nagpal ◽  
Santosh Kumar Mishra ◽  
Gagan Deep ◽  
Hariom Yadav

Transient receptor potential (TRP) channel family proteins are sensors for pain, which sense a variety of thermal and noxious chemicals. Sensory neurons innervating the gut abundantly express TRPA1 and TRPV1 channels and are in close proximity of gut microbes. Emerging evidence indicates a bi-directional gut–brain cross-talk in several entero-neuronal pathologies; however, the direct evidence of TRP channels interacting with gut microbial populations is lacking. Herein, we examine whether and how the knockout (KO) of TRPA1 and TRPV1 channels individually or combined TRPA1/V1 double-knockout (dKO) impacts the gut microbiome in mice. We detect distinct microbiome clusters among the three KO mouse models versus wild-type (WT) mice. All three TRP-KO models have reduced microbial diversity, harbor higher abundance of Bacteroidetes, and a reduced proportion of Firmicutes. Specifically distinct arrays in the KO models are determined mainly by S24-7, Bacteroidaceae, Clostridiales, Prevotellaceae, Helicobacteriaceae, Rikenellaceae, and Ruminococcaceae. A1KO mice have lower Prevotella, Desulfovibrio, Bacteroides, Helicobacter and higher Rikenellaceae and Tenericutes; V1KO mice demonstrate higher Ruminococcaceae, Lachnospiraceae, Ruminococcus, Desulfovibrio and Mucispirillum; and A1V1dKO mice exhibit higher Bacteroidetes, Bacteroides and S24-7 and lower Firmicutes, Ruminococcaceae, Oscillospira, Lactobacillus and Sutterella abundance. Furthermore, the abundance of taxa involved in biosynthesis of lipids and primary and secondary bile acids is higher while that of fatty acid biosynthesis-associated taxa is lower in all KO groups. To our knowledge, this is the first study demonstrating distinct gut microbiome signatures in TRPA1, V1 and dKO models and should facilitate prospective studies exploring novel diagnostic/ therapeutic modalities regarding the pathophysiology of TRP channel proteins.


2020 ◽  
Vol 295 (29) ◽  
pp. 9986-9997
Author(s):  
Nicholas W. Zaccor ◽  
Charlotte J. Sumner ◽  
Solomon H. Snyder

G-protein–coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of β-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a β-arrestin–dependent luciferase assay, we characterize a GPCR–TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits β-arrestin–dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II–mediated G-protein–associated second messenger accumulation, AT1R receptor phosphorylation, and β-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin–dependent manner, preventing β-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


2019 ◽  
Vol 7 (12) ◽  
pp. 108 ◽  
Author(s):  
Giorgio Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
Matteo Santoni ◽  
Oliviero Marinelli

In mammals, the transient receptor potential (TRP) channels family consists of six different families, namely TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin), that are strictly connected with cancer cell proliferation, differentiation, cell death, angiogenesis, migration, and invasion. Changes in TRP channels’ expression and function have been found to regulate cell proliferation and resistance or sensitivity of cancer cells to apoptotic-induced cell death, resulting in cancer-promoting effects or resistance to chemotherapy treatments. This review summarizes the data reported so far on the effect of targeting TRP channels in different types of cancer by using multiple TRP-specific agonists, antagonists alone, or in combination with classic chemotherapeutic agents, microRNA specifically targeting the TRP channels, and so forth, and the in vitro and in vivo feasibility evaluated in experimental models and in cancer patients. Considerable efforts have been made to fight cancer cells, and therapies targeting TRP channels seem to be the most promising strategy. However, more in-depth investigations are required to completely understand the role of TRP channels in cancer in order to design new, more specific, and valuable pharmacological tools.


2011 ◽  
Vol 300 (6) ◽  
pp. R1494-R1505 ◽  
Author(s):  
Noriyuki Mori ◽  
Fuminori Kawabata ◽  
Shigenobu Matsumura ◽  
Hiroshi Hosokawa ◽  
Shigeo Kobayashi ◽  
...  

The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice. Intragastric administration of allyl isothiocyanate (AITC; a typical TRPA1 agonist) markedly increased carbohydrate oxidation but did not affect oxygen consumption. To examine whether TRP channels mediate this increase in carbohydrate oxidation, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastric administration of AITC increased carbohydrate oxidation in TRPA1 KO mice but not in TRPV1 KO mice. Furthermore, AITC dose-dependently increased intracellular calcium ion concentration in cells expressing TRPV1. These findings suggest that AITC might activate TRPV1 and that AITC increased carbohydrate oxidation via TRPV1.


2018 ◽  
Vol 64 (10) ◽  
pp. 727-731 ◽  
Author(s):  
Linghuo Jiang ◽  
Yi Yang

Transient receptor potential (TRP) channels, an ancient family of cation channels, are highly conserved in eukaryotes and play various physiological functions, ranging from sensation of ion homeostasis to reception of pain and vision. Calcium-permeable TRP channels have been identified from the plant Arabidopsis thaliana (AtCsc1) and the budding yeast Saccharomyces cerevisiae (ScCsc1). In this study, we characterized the functions of the Csc1 homolog, orf19.4805, in Candida albicans. Orf19.4805 is a protein of 866 amino acids and 11 transmembrane domains, which shares 49% identity (69% similarity) in amino acid sequence with ScRsn1. Here, we demonstrate that deletion of the orf19.4805 gene causes C. albicans cells to be sensitive to SDS (sodium dodecyl sulfate) and antifungal drugs, and tolerance to zinc, manganese, and cadmium ions. Candida albicans cells lacking orf19.4805 show a defect in filamentation in vitro. Therefore, orf19.4805 is involved in the regulation of cation homeostasis and filamentation in C. albicans.


2003 ◽  
Vol 371 (3) ◽  
pp. 1045-1053 ◽  
Author(s):  
Inka HEINER ◽  
Jörg EISFELD ◽  
Christian R. HALASZOVICH ◽  
Edith WEHAGE ◽  
Eberhard JÜNGLING ◽  
...  

An early key event in the activation of neutrophil granulocytes is Ca2+ influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase–PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca2+ channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD+. Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na+ and Ca2+, which is regulated by ADP-ribose and the redox state.


2015 ◽  
Vol 27 (1) ◽  
pp. 177-188 ◽  
Author(s):  
Luis Arias-Darraz ◽  
Deny Cabezas ◽  
Charlotte K. Colenso ◽  
Melissa Alegría-Arcos ◽  
Felipe Bravo-Moraga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document