scholarly journals Profiling and Functional Analysis of Long Noncoding RNAs and mRNAs during Porcine Skeletal Muscle Development

2021 ◽  
Vol 22 (2) ◽  
pp. 503
Author(s):  
Ya Tan ◽  
Mailin Gan ◽  
Linyuan Shen ◽  
Liang Li ◽  
Yuan Fan ◽  
...  

Gene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially expressed during porcine skeletal muscle development. However, only a few studies have been conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth stages: the inflection point with the maximum growth rate (MGI), the inflection point of the gradually increasing stage to the rapidly increasing stage (GRI), and the inflection point of the rapidly increasing stage to the slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. Qingyu pigs reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially expressed lncRNAs (DELs) were identified in the GRI vs. MGI, and RSI vs. MGI, comparisons. Functional enrichment analysis revealed that genes involved in immune system development and energy metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI stages, respectively, whereas genes involved in lipid metabolism were enriched at the RSI stage. We further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430 was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a (miR-133a). Our findings provide the basis for further investigation of the regulatory mechanisms and molecular genetics of muscle development in pigs.

2020 ◽  
Author(s):  
Ya Tan ◽  
Mailin Gan ◽  
Linyuan Shen ◽  
Liang Li ◽  
Yuan Fan ◽  
...  

Abstract BackgroundGene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially expressed during porcine skeletal muscle development. However, only a few studies have been conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth stages: of the inflection point with the maximum growth rate (MGI), inflection point of gradual increase stage to rapid increasing stage (GRI) and inflection point of rapid increasing stage to slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. ResultsQingyu pigs reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially expressed lncRNAs (DELs) were identified in the GRI vs. MGI, RSI vs. MGI comparisons. Functional enrichment analysis revealed that genes involved in immune system development and energy metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI stages, respectively, whereas genes involved in energy and lipid metabolism were enriched at the RSI stage. We further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430 was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a (miR-133a). ConclusionThese findings indicate lncRNAs and a certain lncRNA G1430 involved in the regulatory mechanism during pig muscle development. Our findings provide the basis for further investigation of the regulatory mechanisms and molecular genetics of muscle development in pigs.


Animals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 127
Author(s):  
Qing Li ◽  
Ruizao Liu ◽  
Huijing Zhao ◽  
Ran Di ◽  
Zengkui Lu ◽  
...  

Long noncoding RNAs (lncRNAs) are increasingly being recognized as key regulators in many cellular processes. However, few reports of them in livestock have been published. Here, we describe the identification and characterization of lncRNAs in ovine skeletal muscle. Eight libraries were constructed from the gastrocnemius muscle of fetal (days 85 and 120), newborn and adult Texel and Ujumqin sheep. The 2002 identified transcripts shared some characteristics, such as their number of exons, length and distribution. We also identified some coding genes near these lncRNA transcripts, which are particularly associated with transcriptional regulation- and development-related processes, suggesting that the lncRNAs are associated with muscle development. In addition, in pairwise comparisons between the libraries of the same stage in different breeds, a total of 967 transcripts were differentially expressed but just 15 differentially expressed lncRNAs were common to all stages. Among them, we found that TCONS_00013201 exhibited higher expression in Ujumqin samples, while TCONS_00006187 and TCONS_00083104 were higher in Texel samples. Moreover, TCONS_00044801, TCONS_00008482 and TCONS_00102859 were almost completely absent from Ujumqin samples. Our results suggest that differences in the expression of these lncRNAs may be associated with the muscular differences observed between Texel and Ujumqin sheep breeds.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


Neuropeptides ◽  
2010 ◽  
Vol 44 (2) ◽  
pp. 209-214 ◽  
Author(s):  
K. de Picoli Souza ◽  
E.C. Batista ◽  
E.D. Silva ◽  
F.C. Reis ◽  
S.M.A. Silva ◽  
...  

2021 ◽  
Author(s):  
Jiyuan Shen ◽  
Huimin Zhen ◽  
Lu Li ◽  
Yuting Zhang ◽  
Jiqing Wang ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a class of non-coding RNA that play crucial roles in the development of skeletal muscle. However, little is known about the role of circRNAs in caprine skeletal muscle. In this study, the muscle fiber size and expression profiles of circRNAs were compared in Longissimus dorsi muscle of Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotypic differences in meat production performance, using hematoxylin and eosin staining and RNA-Seq, respectively.Results: The muscle fiber size in LC goats were larger than those in ZB goats (P < 0.05). A total of 10,875 circRNAs were identified and 214 of these were differentially expressed between the two caprine breeds. The authentication and expression levels of 20 circRNAs were confirmed using reverse transcriptase-polymerase chain reaction (RT-PCR) and DNA sequencing. The parent genes of differentially expressed circRNAs were mainly enriched in connective tissue development, Rap1, cGMP-PKG, cAMP and Ras signaling pathway. Some miRNAs reportedly associated with skeletal muscle development and intramuscular fat deposition would be targeted by several differentially expressed circRNAs and the most highly expressed circRNA (circ_001086).Conclusion: These results provide an improved understanding of the functions of circRNAs in skeletal muscle development of goats.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1417
Author(s):  
Chuan Li ◽  
Ting Xiong ◽  
Mingfang Zhou ◽  
Lei Wan ◽  
Suwang Xi ◽  
...  

Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 859 ◽  
Author(s):  
Xin Hu ◽  
Yishen Xing ◽  
Ling Ren ◽  
Yahui Wang ◽  
Qian Li ◽  
...  

MicroRNAs modulate a variety of cellular events, including skeletal muscle development, but the molecular basis of their functions in fetal bovine skeletal muscle development is poorly understood. In this study, we report that bta-miR-24-3p promotes the myogenic differentiation of fetal bovine PDGFRα- progenitor cells. The expression of bta-miR-24-3p increased during myogenic differentiation. Overexpression of bta-miR-24-3p significantly promoted myogenic differentiation, but inhibited proliferation. A dual-luciferase assay identified ACVR1B as a direct target of bta-miR-24-3p. Similarly, knocking down ACVR1B by RNA interference also significantly inhibited proliferation and promoted the differentiation of bovine PDGFRα- progenitor cells. Thus, our study provides a mechanism in which bta-miR-24-3p regulates myogenesis by inhibiting ACVR1B expression.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Mao Nie ◽  
Zhong-Liang Deng ◽  
Jianming Liu ◽  
Da-Zhi Wang

A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs’ functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.


2010 ◽  
Vol 53 (6) ◽  
pp. 734-736
Author(s):  
H. B. He ◽  
S. H. Zhao ◽  
X. Y. Li

Abstract. MicroRNAs (miRNAs) are a class of short, non-coding regulatory RNAs, which are approximately 22 nucleotides in length. Typically, miRNAs negatively regulate gene expression by binding with the 3' untranslated region (UTR) of its regulatory target mRNAs. MicroRNAs are known to play diverse roles in fundamental biological processes, such as proliferation, differentiation and apoptosis (Bartel 2004, 2009). It has been reported that miR-1, miR-133, miR-181 and miR-206 play important roles in skeletal muscle proliferation and hypertrophy (Callis et al. 2007, McCarthy -Esser 2007). We have detected porcine miRNA expression profiles during different stage of skeletal muscle development and a total of 140 miRNAs were differentially expressed (HUANG et al. 2008). In this study, we mapped five differentially expressed miRNAs (mir-29c, mir-103-1, mir-127, mir-193b and mir-218-1) using the radiation hybrid (IMpRH) panel (YERLE et al. 1998).


Sign in / Sign up

Export Citation Format

Share Document