scholarly journals Modeling Neurodevelopmental and Neuropsychiatric Diseases with Astrocytes Derived from Human-Induced Pluripotent Stem Cells

2021 ◽  
Vol 22 (4) ◽  
pp. 1692
Author(s):  
Baiyan Ren ◽  
Anna Dunaevsky

Accumulating studies demonstrate the morphological and functional diversity of astrocytes, a subtype of glial cells in the central nervous system. Animal models are instrumental in advancing our understanding of the role of astrocytes in brain development and their contribution to neurological disease; however, substantial interspecies differences exist between rodent and human astrocytes, underscoring the importance of studying human astrocytes. Human pluripotent stem cell differentiation approaches allow the study of patient-specific astrocytes in the etiology of neurological disorders. In this review, we summarize the structural and functional properties of astrocytes, including the unique features of human astrocytes; demonstrate the necessity of the stem cell platform; and discuss how this platform has been applied to the research of neurodevelopmental and neuropsychiatric diseases.

2019 ◽  
Vol 20 (16) ◽  
pp. 3862 ◽  
Author(s):  
Mika Suga ◽  
Takayuki Kondo ◽  
Haruhisa Inoue

Astrocytes play vital roles in neurological disorders. The use of human induced pluripotent stem cell (iPSC)-derived astrocytes provides a chance to explore the contributions of astrocytes in human diseases. Here we review human iPSC-based models for neurological disorders associated with human astrocytes and discuss the points of each model.


Author(s):  
Tarek Magdy ◽  
Mariam Jouni ◽  
Hui-Hsuan Kuo ◽  
Carly J. Weddle ◽  
Davi Lyra-Leite ◽  
...  

Background: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G>A, L461L) and the intronic variant rs885004 in SLC28A3 as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity (AIC). However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in AIC, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. Methods: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were re-recruited and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic hiPSCs using a CRISPR/Cas9. Fine−mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of potential causal variant was done using cytosine base editor. SLC28A3−AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-Seq after ribosomal RNA depletion. Drug screening was done using the Prestwick drug library ( n = 1200) followed by in vivo validation in mice. The effect of desipramine on DOX cytotoxicity was also investigated in eight cancer cell lines. Results: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore¬-based fine-mapping and base editing we identify a novel cardioprotective SNP rs11140490 in the SLC28A3 locus which exerts its effect by regulating an antisense long noncoding-RNA ( SLC28A3-AS1 ) that overlaps with SLC28A3 . Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. Conclusions: This work demonstrates the power of the human induced pluripotent stem cell model to take a SNP from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.


2018 ◽  
Vol 234 (8) ◽  
pp. 12278-12289 ◽  
Author(s):  
Javad Amini Mahabadi ◽  
Hamed Sabzalipoor ◽  
Hossein Nikzad ◽  
Elahe Seyedhosseini ◽  
Seyed Ehsan Enderami ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5760 ◽  
Author(s):  
Elvira Immacolata Parrotta ◽  
Stefania Scalise ◽  
Luana Scaramuzzino ◽  
Giovanni Cuda

A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 249
Author(s):  
Ana Checa-Ros ◽  
Antonio Jeréz-Calero ◽  
Antonio Molina-Carballo ◽  
Cristina Campoy ◽  
Antonio Muñoz-Hoyos

Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.


Sign in / Sign up

Export Citation Format

Share Document