scholarly journals How to Select Firefly Luciferin Analogues for In Vivo Imaging

2021 ◽  
Vol 22 (4) ◽  
pp. 1848
Author(s):  
Ryohei Saito-Moriya ◽  
Jun Nakayama ◽  
Genta Kamiya ◽  
Nobuo Kitada ◽  
Rika Obata ◽  
...  

Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.

Tetrahedron ◽  
2018 ◽  
Vol 74 (6) ◽  
pp. 652-660 ◽  
Author(s):  
Masahiro Kiyama ◽  
Satoshi Iwano ◽  
Satoshi Otsuka ◽  
Shijia W. Lu ◽  
Rika Obata ◽  
...  

Author(s):  
Xingye Yang ◽  
Xiaojun Qin ◽  
Huimin Ji ◽  
Lupei Du ◽  
Minyong Li

Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caged strategy, lots of...


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Arthur Taylor ◽  
Jack Sharkey ◽  
Antonius Plagge ◽  
Bettina Wilm ◽  
Patricia Murray

The ability to track the biodistribution and fate of multiple cell populations administered to rodents has the potential to facilitate the understanding of biological processes in a range of fields including regenerative medicine, oncology, and host/pathogen interactions. Bioluminescence imaging is an important tool for achieving this goal, but current protocols rely on systems that have poor sensitivity or require spectral decomposition. Here, we show that a bioluminescence resonance energy transfer reporter (BRET) based on NanoLuc and LSSmOrange in combination with firefly luciferase enables the unambiguous discrimination of two cell populations in vivo with high sensitivity. We insert each of these reporter genes into cells using lentiviral vectors and demonstrate the ability to monitor the cells’ biodistribution under a wide range of administration conditions, including the venous or arterial route, and in different tissues including the brain, liver, kidneys, and tumours. Our protocol allows for the imaging of two cell populations in the same imaging session, facilitating the overlay of the signals and the identification of anatomical positions where they colocalise. Finally, we provide a method for postmortem confirmation of the presence of each cell population in excised organs.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


2006 ◽  
Vol 81 (10) ◽  
pp. 1421-1427 ◽  
Author(s):  
Xiaojuan Chen ◽  
Xiaomin Zhang ◽  
Courtney S. Larson ◽  
Marshall S. Baker ◽  
Dixon B. Kaufman

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120925 ◽  
Author(s):  
Binje Vick ◽  
Maja Rothenberg ◽  
Nadine Sandhöfer ◽  
Michela Carlet ◽  
Cornelia Finkenzeller ◽  
...  

2016 ◽  
Vol 258 ◽  
pp. S234
Author(s):  
S. Seyed Forootan ◽  
F. Mutter ◽  
J. Clarke ◽  
A. Kipar ◽  
K. Park ◽  
...  

2004 ◽  
Vol 120 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Shiva Sarraf-Yazdi ◽  
Jing Mi ◽  
Mark W. Dewhirst ◽  
Bryan M. Clary

Sign in / Sign up

Export Citation Format

Share Document