scholarly journals Comparative Proteomic Analysis of Developmental Changes in P-Type Cytoplasmic Male Sterile and Maintainer Anthers in Wheat

2021 ◽  
Vol 22 (4) ◽  
pp. 2012
Author(s):  
Yamin Zhang ◽  
Qilu Song ◽  
Lili Zhang ◽  
Zheng Li ◽  
Chengshe Wang ◽  
...  

Cytoplasmic male sterility (CMS) plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the molecular mechanism underlying CMS remains unknown. This study provides a comprehensive morphological and proteomic analysis of the anthers of a P-type CMS wheat line (P) and its maintainer line, Yanshi 9 hao (Y). Cytological observations indicated that the P-type CMS line shows binucleate microspore abortion. In this line, the tapetum degraded early, leading to anther cuticle defects, which could not provide the nutrition needed for microspore development in a timely manner, thus preventing the development of the microspore to the normal binucleate stage. Proteomic analysis revealed novel proteins involved in P-type CMS. Up to 2576 differentially expressed proteins (DEPs) were quantified in all anthers, and these proteins were significantly enriched in oxidative phosphorylation, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylpropanoid biosynthesis, and pyruvate metabolism pathways. These proteins may comprise a network that regulates male sterility in wheat. Based on the function analysis of DEPs involved in the complex network, we concluded that the P-type CMS line may be due to cellular dysfunction caused by disturbed carbohydrate metabolism, inadequate energy supply, and disturbed protein synthesis. These results provide insights into the molecular mechanism underlying male sterility and serve as a valuable resource for researchers in plant biology, in general, and plant sexual reproduction, in particular.

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 580
Author(s):  
Zhixing Nie ◽  
Jianying Chen ◽  
Yunpeng Song ◽  
Hongfei Fu ◽  
Hong Wang ◽  
...  

Cytoplasmic male-sterility (CMS) is important for the utilization of crop heterosis and study of the molecular mechanisms involved in CMS could improve breeding programs. In the present study, anthers of the pepper CMS line HZ1A and its maintainer line HZ1B were collected from stages S1, S2, and S3 for transcriptome sequencing. A total of 47.95 million clean reads were obtained, and the reads were assembled into 31,603 unigenes. We obtained 42 (27 up-regulated and 15 down-regulated), 691 (346 up-regulated and 345 down-regulated), and 709 (281 up-regulated and 428 down-regulated) differentially expressed genes (DEGs) in stages S1, S2, and S3, respectively. Through Gene Ontology (GO) analysis, the DEGs were found to be composed of 46 functional groups. Two GO terms involved in photosynthesis, photosynthesis (GO:0015986) and photosystem I (GO:0009522), may be related to CMS. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, oxidative phosphorylation (ko00190) and phenylpropanoid biosynthesis (ko00940) were significantly enriched in the S1 and S2 stages, respectively. Through the analysis of 104 lipid metabolism-related DEGs, four significantly enriched KEGG pathways may help to regulate male sterility during anther development. The mitochondrial genes orf470 and atp6 were identified as candidate genes of male sterility for the CMS line HZ1A. Overall, the results will provide insights into the molecular mechanisms of pepper CMS.


2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


2018 ◽  
Vol 69 (5) ◽  
pp. 469 ◽  
Author(s):  
Hongzhan Liu ◽  
Junsheng Wang ◽  
Chaoqiong Li ◽  
Lin Qiao ◽  
Xueqin Wang ◽  
...  

Male reproductive development in higher plants is highly sensitive to various stressors, including high temperature (HT). In this study, physiological male-sterile plants of wheat (Triticum aestivum L.) were established using HT induction. The physiological changes and expression levels of genes mainly related to carbohydrate metabolism and sporopollenin in male-sterile processes were studied by using biological techniques, including iodine–potassium iodide staining, paraffin sectioning, scanning electron microscopy (SEM) and fluorescent quantitative analysis. Results of paraffin sectioning and SEM revealed that parts of HT male-sterile anthers, including the epidermis and tapetum, were remarkably different from those of normal anthers. The expression levels of TaSUT1, TaSUT2, IVR1 and IVR5 were significantly lower than of normal anthers at the early microspore and trinucleate stages. The RAFTIN1 and TaMS26 genes may contribute to biosynthesis and proper ‘fixation’ of sporopollenin in the development of pollen wall; however, their expression levels were significantly higher at the early tetrad stage and early microspore stage in HT sterile anthers. The recently cloned MS1 gene was expressed at the early tetrad and early microspore stages but not at the trinucleate stage. Moreover, this gene showed extremely significant, high expression in HT sterile anthers compared with normal anthers. These results demonstrate that HT induction of wheat male sterility is probably related to the expression of genes related to carbohydrate metabolism and sporopollenin metabolism. This provides a theoretical basis and technological approach for further studies on the mechanisms of HT induction of male sterility.


2020 ◽  
Vol 21 (7) ◽  
pp. 2445
Author(s):  
Zhiwen Liu ◽  
Yanfang Liu ◽  
Yuhe Sun ◽  
Aiguo Yang ◽  
Fengxia Li

sua-CMS (cytoplasmic male sterility) is the only male sterile system in tobacco breeding, but the mechanism of abortion is unclear. Cytological characteristics show that abortion in the sua-CMS line msZY occurs before the differentiation of sporogenous cells. In this study, a comparative transcriptomic analysis was conducted on flower buds at the abortion stage of msZY and its male fertile control ZY. A total of 462 differentially expressed genes were identified in msZY and ZY, which were enriched via protein processing in the endoplasmic reticulum (ER), oxidative phosphorylation, photosynthesis, and circadian rhythm-plant by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most genes were downregulated in the ER stress pathway, heat-shock protein family, F1F0-ATPase encoding by the mitochondrial genome, and differentiation of stamens. Genes in the programmed cell death (PCD) pathway were upregulated in msZY. The transcriptome results were consistent with those of qRT-PCR. Ultrastructural and physiological analyses indicted active vacuole PCD and low ATP content in msZY young flower buds. We speculated that PCD and a deficiency in ATP synthesis are essential for the abortion of sua-CMS. This study reveals the potential mechanism of abortion of tobacco sua-CMS.


2013 ◽  
Vol 93 (4) ◽  
pp. 675-681 ◽  
Author(s):  
Qing Song Ba ◽  
Gai Sheng Zhang ◽  
Jun Sheng Wang ◽  
Hui Xue Che ◽  
Hong Zhan Liu ◽  
...  

Ba, Q. S., Zhang, G. S., Wang, J. S., Che, H. X., Liu, H. Z., Niu, N., Ma, S. C. and Wang, J. W. 2013. Relationship between metabolism of reactive oxygen species and chemically induced male sterility in wheat (Triticum aestivum L.). Can. J. Plant Sci. 93: 675–681. Chemically induced male sterility (CIMS) systems in wheat are among the male sterility types used for hybrid wheat (Triticum aestivum L.) production in China. Some studies suggested that male sterile line Xi'nong 1376-CIMS induced by chemical hybridizing agents (CHA) may suffer from oxidative stress as its cyanide-resistant respiration is lower than that of Xi'nong1376. To elucidate the metabolic mechanism of reactive oxygen species (ROS) in the CIMS anthers, the metabolism changes in the production and scavenging of ROS and gene expression related to ROS-scavenging enzymes were investigated in the anther of Xi'nong 1376-CIMS and Xi'nong1376.Anthers of Xi'nong 1376-CIMS had higher contents of [Formula: see text] and H2O2 than those of 1376, which corresponds to expression level of the NADPH oxidase (NOX) gene, and has higher contents of malondialdehyde compared with 1376. Simultaneously, there were lower activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascrodate peroxidase (APX) in scavenging ROS in the anthers of the Xi'nong 1376-CIMS line than in Xi'nong1376. Meanwhile, the expressions of SOD, POD, CAT and APX genes in 1376 were always higher at different levels than those in the Xi'nong 1376-CIMS line except for POD in stage 1. Therefore, it is possible that the sterility in Xi'nong 1376-CIMS is related to the abortion of microspores induced by chronic oxidative stress caused by an abnormal increase in ROS.


1981 ◽  
Vol 23 (3) ◽  
pp. 493-496 ◽  
Author(s):  
M. A. Hossain ◽  
C. J. Driscoll

A γ-ray induced male-sterility mutant on chromosome 4A of Triticum aestivum L. (Cornerstone mutant ms1c) was transferred to T. durum Desf. by backcrossing. Selfed heterozygotes of T. durum produced fewer male-sterile plants than those of T. aestivum. Male-sterile plants of T. durum and T. aestivum were crossed with diploid rye (Secale cereale L.) and fertile hexaploid and octoploid triticales were obtained following colchicine treatment of the F1's. Thus, rye is able to restore fertility at both of these ploidy levels.


2021 ◽  
Vol 22 (12) ◽  
pp. 6388
Author(s):  
Miaomiao Hao ◽  
Wenlong Yang ◽  
Weiwen Lu ◽  
Linhe Sun ◽  
Muhammad Shoaib ◽  
...  

Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.


2019 ◽  
Vol 70 (3) ◽  
pp. 204 ◽  
Author(s):  
Qingsong Ba ◽  
Lanlan Zhang ◽  
Guiping Li ◽  
Gaisheng Zhang ◽  
Hongzhan Liu ◽  
...  

K-Type cytoplasmic male sterility (K-CMS) plays an important role in breeding hybrid wheat. This study was designed to investigate the association of sucrose metabolism with K-CMS in wheat (Triticum aestivum L.) anthers at the binucleate stage. Levels of sucrose in the anthers of the K-CMS line remained higher than in the fertile line, but glucose and fructose contents in the anthers of the K-CMS line were dramatically lower than in the fertile line. Compared with the fertile line, the activities of cell-wall-bound invertase (CWIN), neutral invertase and vacuolar invertase (VIN) were significantly reduced. Quantitative real-time polymerase chain reaction analyses showed that the expression levels of one CWIN gene (IVR1), one VIN gene (IVR5) and a sucrose transporter gene (TaSUT1) were significantly downregulated in K-CMS anthers. Furthermore, western blot confirmed that the protein expression level of IVR1 was higher in sterile anthers than in male fertile anthers. Thus, it appears that the accumulation of sucrose in K-CMS anthers might involve a decrease in activity and a reduction in content of invertase. In conclusion, the results suggest that an inability to metabolise incoming sucrose to hexoses may be involved in the K-CMS pollen-developmental lesion.


Sign in / Sign up

Export Citation Format

Share Document