scholarly journals Drosophila as a Model for Infectious Diseases

2021 ◽  
Vol 22 (5) ◽  
pp. 2724
Author(s):  
J. Michael Harnish ◽  
Nichole Link ◽  
Shinya Yamamoto

The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bjarne Vermeire ◽  
Liara M. Gonzalez ◽  
Robert J. J. Jansens ◽  
Eric Cox ◽  
Bert Devriendt

AbstractSmall intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 357
Author(s):  
Diane Lee ◽  
Mark Chambers

The epithelial lining of the lung is often the first point of interaction between the host and inhaled pathogens, allergens and medications. Epithelial cells are therefore the main focus of studies which aim to shed light on host-pathogen interactions, to dissect the mechanisms of local host immunity and study toxicology. If these studies are not to be conducted exclusively in vivo, it is imperative that in vitro models are developed with a high in vitro-in vivo correlation. We describe here a co-culture bilayer model of the bovine alveolus, designed to overcome some of the limitations encountered with mono-culture and live animal models. Our system includes bovine pulmonary arterial endothelial cells (BPAECs) seeded onto a permeable membrane in 24 well Transwell format. The BPAECs are overlaid with immortalised bovine alveolar type II epithelial cells and the bilayer cultured at air-liquid interface for 14 days before use; in our case to study host-mycobacterial interactions. Characterisation of novel cell lines and the bilayer model have provided compelling evidence that immortalised bovine alveolar type II cells are an authentic substitute for primary alveolar type II cells and their culture as a bilayer in conjunction with BPAECs provides a physiologically relevant in vitro model of the bovine alveolus.   The bilayer model may be used to study dynamic intracellular and extracellular host-pathogen interactions, using proteomics, genomics, live cell imaging, in-cell ELISA and confocal microscopy. The model presented in this article enables other researchers to establish an in vitro model of the bovine alveolus that is easy to set up, malleable and serves as a comparable alternative to in vivo models, whilst allowing study of early host-pathogen interactions, currently not feasible in vivo. The model therefore achieves one of the 3Rs objectives in that it replaces the use of animals in research of bovine respiratory diseases.


2019 ◽  
Author(s):  
Macy G. Olson ◽  
Ray E. Widner ◽  
Lisa M. Jorgenson ◽  
Alyssa Lawrence ◽  
Dragana Lagundzin ◽  
...  

AbstractAs an obligate intracellular pathogenic bacterium,C. trachomatisdevelops within a membrane-bound vacuole, termed the inclusion. The inclusion membrane is modified by chlamydial inclusion membrane proteins (Incs), which act as the mediators of host-pathogen interactions. Anin vivounderstanding of Inc-Inc and Inc-eukaryotic protein interactions and how these contribute to overall host-chlamydial interactions at this unique membrane is lacking. Previous bacterial two-hybrid studies established that certain Incs have the propensity to bind other Incs while others have limited Inc-Inc interactions. We hypothesize some Incs organize the inclusion membrane whereas other Incs bind eukaryotic proteins to promote chlamydial-host interactions. To test this hypothesis, we used the ascorbate peroxidase proximity labeling system (APEX2), which labels proximal proteins with biotinin vivo, and chose to analyze Inc proteins with varying Inc-binding propensities. We inducibly expressed these Incs fused to APEX2 inChlamydia trachomatisL2, verified their localization and labeling activities by transmission electron microscopy, and used affinity purification-mass spectrometry to identify biotinylated proteins. To analyze our mass spectrometry results for statistical significance, we used Significance Analysis of INTeractome (SAINT), which demonstrated that our Inc-APEX2 constructs labeled Inc proteins as well as known and previously unreported eukaryotic proteins that localize to the inclusion. Our results broadly support two types of Inc interactions: Inc-Inc versus Inc-host. One eukaryotic protein, LRRFIP1 (LRRF1) was found in all of our Inc-APEX2 datasets, which is consistent with previously published AP-MS datasets. For the first time, we demonstrate by confocal and super-resolution microscopy that endogenous LRRF1 localizes to the chlamydial inclusion. We also used bacterial two-hybrid studies and pulldown assays to determine if LRRF1 was identified as a true interacting protein or was proximal to our Inc-APEX2 constructs. Combined, our data highlight the utility of APEX2 to capture the complexin vivoprotein-protein interactions at the chlamydial inclusion.Author summaryMany intracellular bacteria, including the obligate intracellular pathogenChlamydia trachomatis, grow within a membrane-bound “bacteria containing vacuole” (BCV) that, in most cases, prevents association with the lysosome. Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. Here, we used the ascorbate peroxidase proximity labeling system (APEX2), which labels proximal proteins with biotinin vivo, to study the interactions that occur at the chlamydial vacuolar, or inclusion, membrane. The inclusion membrane is modified by chlamydial type III secreted inclusion membrane proteins (Incs), which act as the mediators of host-pathogen interactions. Our results broadly support two types of Inc interactions: Inc-Inc versus Inc-host. Our data highlight the utility of APEX2 to capture the complex protein-protein interactions at a membrane sitein vivoin the context of infection.


Cell Reports ◽  
2020 ◽  
Vol 30 (2) ◽  
pp. 335-350.e4 ◽  
Author(s):  
Davide Pisu ◽  
Lu Huang ◽  
Jennifer K. Grenier ◽  
David G. Russell

2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Emily E. Rosowski

ABSTRACT Macrophages are a key cell type in innate immunity. Years of in vitro cell culture studies have unraveled myriad macrophage pathways that combat pathogens and demonstrated how pathogen effectors subvert these mechanisms. However, in vitro cell culture studies may not accurately reflect how macrophages fit into the context of an innate immune response in whole animals with multiple cell types and tissues. Larval zebrafish have emerged as an intermediate model of innate immunity and host-pathogen interactions to bridge the gap between cell culture studies and mammalian models. These organisms possess an innate immune system largely conserved with that of humans and allow state-of-the-art genetic and imaging techniques, all in the context of an intact organism. Using larval zebrafish, researchers are elucidating the function of macrophages in response to many different infections, including both bacterial and fungal pathogens. The goal of this review is to highlight studies in zebrafish that utilized live-imaging techniques to analyze macrophage activities in response to pathogens. Recent studies have explored the roles of specific pathways and mechanisms in macrophage killing ability, explored how pathogens subvert these responses, identified subsets of macrophages with differential microbicidal activities, and implicated macrophages as an intracellular niche for pathogen survival and trafficking. Research using this model continues to advance our understanding of how macrophages, and specific pathways inside these cells, fit into complex multicellular innate immune responses in vivo, providing important information on how pathogens evade these pathways and how we can exploit them for development of treatments against microbial infections.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Shumin Tan

ABSTRACT Shumin Tan works in the field of Mycobacterium tuberculosis-host interactions. In this mSphere of Influence article, she reflects on how the paper “Single-cell phenotyping within transparent intact tissue through whole-body clearing” by B. Yang et al. (Cell 158:945–958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted her ideas on approaches to visualize and understand heterogeneous host-pathogen interactions in vivo in 3-dimensional space at the single-cell level, through the tractable and broadly compatible tissue optical clearing methods developed.


Sign in / Sign up

Export Citation Format

Share Document