scholarly journals Increased Presence of Complement Factors and Mast Cells in Alveolar Bone and Tooth Resorption

2021 ◽  
Vol 22 (5) ◽  
pp. 2759
Author(s):  
Kathrin Luntzer ◽  
Ina Lackner ◽  
Birte Weber ◽  
Yvonne Mödinger ◽  
Anita Ignatius ◽  
...  

Periodontitis is the inflammatory destruction of the tooth-surrounding and -supporting tissue, resulting at worst in tooth loss. Another locally aggressive disease of the oral cavity is tooth resorption (TR). This is associated with the destruction of the dental mineralized tissue. However, the underlying pathomechanisms remain unknown. The complement system, as well as mast cells (MCs), are known to be involved in osteoclastogenesis and bone loss. The complement factors C3 and C5 were previously identified as key players in periodontal disease. Therefore, we hypothesize that complement factors and MCs might play a role in alveolar bone and tooth resorption. To investigate this, we used the cat as a model because of the naturally occurring high prevalence of both these disorders in this species. Teeth, gingiva samples and serum were collected from domestic cats, which had an appointment for dental treatment under anesthesia, as well as from healthy cats. Histological analyses, immunohistochemical staining and the CH-50 and AH-50 assays revealed increased numbers of osteoclasts and MCs, as well as complement activity in cats with TR. Calcifications score in the gingiva was highest in animals that suffer from TR. This indicates that MCs and the complement system are involved in the destruction of the mineralized tissue in this condition.

2004 ◽  
Vol 72 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Thomas R. Kozel ◽  
Randall S. MacGill ◽  
Ann Percival ◽  
Qing Zhou

ABSTRACT Sera from normal adult humans may contain high levels of antibody reactive with Candida albicans mannan. This study examined selected biological activities of such antibodies, focusing on sera that were collected from 34 donors and analyzed individually. The results showed that antimannan titers were normally distributed. Reactivity as determined by enzyme-linked immunosorbent assay with serotype A mannan generally paralleled reactivity with serotype B. Analysis of the kinetics for activation of the complement system and deposition of complement component 3 (C3) onto serotype A and serotype B cells showed a decrease in the lag time that occurred before the onset of rapid accumulation of C3 that correlated with increasing antimannan titers. In contrast, there was a decrease in the overall rate of accumulation of C3 on serotype A cells that was strongly correlated with increasing antibody titers; serotype B cells showed no such decrease. An evaluation of the contribution of mannan antibody to opsonophagocytic killing showed that mannan antibody in individual sera and antimannan immunoglobulin G (IgG) affinity purified from human plasma contributed to killing by neutrophils in a dose-dependent fashion in the absence of a functional complement system. However, affinity-purified antibody in very high concentrations was inhibitory to both complement-dependent and complement-independent opsonophagocytosis, and this finding suggests a prozone-like effect. In contrast, if the complement system was functional, antimannan IgG was not needed for opsonophagocytic killing. These results suggest that naturally occurring mannan antibodies and the complement system are functionally redundant for opsonophagocytic killing by neutrophils.


Author(s):  
Aline H de Nooijer ◽  
Inge Grondman ◽  
Nico A F Janssen ◽  
Mihai G Netea ◽  
Loek Willems ◽  
...  

Abstract Background Excessive activation of immune responses in coronavirus disease 2019 (COVID-19) is considered to be related to disease severity, complications, and mortality rate. The complement system is an important component of innate immunity and can stimulate inflammation, but its role in COVID-19 is unknown. Methods A prospective, longitudinal, single center study was performed in hospitalized patients with COVID-19. Plasma concentrations of complement factors C3a, C3c, and terminal complement complex (TCC) were assessed at baseline and during hospital admission. In parallel, routine laboratory and clinical parameters were collected from medical files and analyzed. Results Complement factors C3a, C3c, and TCC were significantly increased in plasma of patients with COVID-19 compared with healthy controls (P < .05). These complement factors were especially elevated in intensive care unit patients during the entire disease course (P < .005 for C3a and TCC). More intense complement activation was observed in patients who died and in those with thromboembolic events. Conclusions Patients with COVID-19 demonstrate activation of the complement system, which is related to disease severity. This pathway may be involved in the dysregulated proinflammatory response associated with increased mortality rate and thromboembolic complications. Components of the complement system might have potential as prognostic markers for disease severity and as therapeutic targets in COVID-19.


1991 ◽  
Vol 66 (01) ◽  
pp. 049-061 ◽  
Author(s):  
Björn Dahlbäck

SummaryThe protein C anticoagulant system provides important control of the blood coagulation cascade. The key protein is protein C, a vitamin K-dependent zymogen which is activated to a serine protease by the thrombin-thrombomodulin complex on endothelial cells. Activated protein C functions by degrading the phospholipid-bound coagulation factors Va and VIIIa. Protein S is a cofactor in these reactions. It is a vitamin K-dependent protein with multiple domains. From the N-terminal it contains a vitamin K-dependent domain, a thrombin-sensitive region, four EGF)epidermal growth factor (EGF)-like domains and a C-terminal region homologous to the androgen binding proteins. Three different types of post-translationally modified amino acid residues are found in protein S, 11 γ-carboxy glutamic acid residues in the vitamin K-dependent domain, a β-hydroxylated aspartic acid in the first EGF-like domain and a β-hydroxylated asparagine in each of the other three EGF-like domains. The EGF-like domains contain very high affinity calcium binding sites, and calcium plays a structural and stabilising role. The importance of the anticoagulant properties of protein S is illustrated by the high incidence of thrombo-embolic events in individuals with heterozygous deficiency. Anticoagulation may not be the sole function of protein S, since both in vivo and in vitro, it forms a high affinity non-covalent complex with one of the regulatory proteins in the complement system, the C4b-binding protein (C4BP). The complexed form of protein S has no APC cofactor function. C4BP is a high molecular weight multimeric protein with a unique octopus-like structure. It is composed of seven identical α-chains and one β-chain. The α-and β-chains are linked by disulphide bridges. The cDNA cloning of the β-chain showed the α- and β-chains to be homologous and of common evolutionary origin. Both subunits are composed of multiple 60 amino acid long repeats (short complement or consensus repeats, SCR) and their genes are located in close proximity on chromosome 1, band 1q32. Available experimental data suggest the β-chain to contain the single protein S binding site on C4BP, whereas each of the α-chains contains a binding site for the complement protein, C4b. As C4BP lacking the β-chain is unable to bind protein S, the β-chain is required for protein S binding, but not for the assembly of the α-chains during biosynthesis. Protein S has a high affinity for negatively charged phospholipid membranes, and is instrumental in binding C4BP to negatively charged phospholipid. This constitutes a novel mechanism for control of the complement system on phospholipid surfaces. Recent findings have shown circulating C4BP to be involved in yet another calcium-dependent protein-protein interaction with a protein known as the serum amyloid P-component (SAP). The binding sites on C4BP for protein S and SAP are independent. SAP, which is a normal constituent in plasma and in tissue, is a so-called pentraxin being composed of 5 non-covalently bound 25 kDa subunits. It is homologous to C reactive protein (CRP) but its function is not yet known. The specific high affinity interactions between protein S, C4BP and SAP suggest the regulation of blood coagulation and that of the complement system to be closely linked.


1995 ◽  
Vol 74 (06) ◽  
pp. 1533-1540 ◽  
Author(s):  
Pål André Holme ◽  
Nils Olav Solum ◽  
Frank Brosstad ◽  
Nils Egberg ◽  
Tomas L Lindahl

SummaryThe mechanism of formation of platelet-derived microvesicles remains controversial.The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann’s thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. MAb FN52 against CD9 which activates the complement system and produces microvesicles due to a membrane permeabilization, ADP (9.37 μM), and the thrombin receptor agonist peptide SFLLRN (100 μM) that activates platelets via G-proteins were used as inducers. In a series of experiments platelets were also preincubated with PGE1 (20 μM). The number of liberated microvesicles, as per cent of the total number of particles (including platelets), was measured using flow cytometry with FITC conjugated antibodies against GPIIIa or GPIb. Activation of GPIIb-IIIa was detected as binding of PAC-1, and exposure of aminophospholipids as binding of annexin V. With normal donors, activation of the complement system induced a reversible PAC-1 binding during shape change. A massive binding of annexin V was seen during shape change as an irreversible process, as well as formation of large numbers of microvesicles (60.6 ±2.7%) which continued after reversal of the PAC-1 binding. Preincubation with PGE1 did not prevent binding of annexin V, nor formation of microvesicles (49.5 ± 2.7%), but abolished shape change and PAC-1 binding after complement activation. Thrombasthenic platelets behaved like normal platelets after activation of complement except for lack of PAC-1 binding (also with regard to the effect of PGE1 and microvesicle formation). Stimulation of normal platelets with 100 μM SFLLRN gave 16.3 ± 1.2% microvesicles, and strong PAC-1 and annexin V binding. After preincubation with PGE1 neither PAC-1 nor annexin V binding, nor any significant amount of microvesicles could be detected. SFLLRN activation of the thrombasthenic platelets produced a small but significant number of microvesicles (6.4 ± 0.8%). Incubation of thrombasthenic platelets with SFLLRN after preincubation with PGE1, gave results identical to those of normal platelets. ADP activation of normal platelets gave PAC-1 binding, but no significant annexin V labelling, nor production of microvesicles. Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.


2018 ◽  
Vol 15 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Melanie Copenhaver ◽  
Chack-Yung Yu ◽  
Robert P. Hoffman

Introduction: Increased systemic inflammation plays a significant role in the development of adult cardiometabolic diseases such as insulin resistance, dyslipidemia, atherosclerosis, and hypertension. The complement system is a part of the innate immune system and plays a key role in the regulation of inflammation. Of particular importance is the activation of complement components C3 and C4. C3 is produced primarily by the liver but is also produced in adipocytes, macrophages and endothelial cells, all of which are present in adipose tissues. Dietary fat and chylomicrons stimulate C3 production. Adipocytes in addition to producing C3 also have receptors for activated C3 and other complement components and thus also respond to as well as produce a target for complement. C3adesArg, also known as acylation stimulation factor, increases adipocyte triglyceride synthesis and release. These physiological effects play a significant role in the development of metabolic syndrome. Epidemiologically, obese adults and non-obese adults with cardiometabolic disease who are not obese have been shown to have increased complement levels. C4 levels also correlate with body mass index. Genetically, specific C3 polymorphisms have been shown to predict future cardiovascular events and. D decreased C4 long gene copy number is associated with increased longevity. Conclusion: Future research is clearly needed to clarify the role of complement in the development of cardiovascular disease and mechanisms for its action. The complement system may provide a new area for intervention in the prevention of cardiometabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document