scholarly journals Transcriptional Changes in Potato Sprouts upon Interaction with Rhizoctonia solani Indicate Pathogen-Induced Interference in the Defence Pathways of Potato

2021 ◽  
Vol 22 (6) ◽  
pp. 3094
Author(s):  
Rita Zrenner ◽  
Bart Verwaaijen ◽  
Franziska Genzel ◽  
Burkhardt Flemer ◽  
Rita Grosch

Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants’ molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants’ comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (−Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term “response to abiotic stimulus” was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.

2019 ◽  
Author(s):  
Marco Tulio Solano-De la Cruz ◽  
Jacel Adame-García ◽  
Josefat Gregorio-Jorge ◽  
Verónica Jiménez-Jacinto ◽  
Leticia Vega-Alvarado ◽  
...  

Abstract Background Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae (Fov). This pathogen causes root and stem rot (RSR) in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with Fov, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Results Analysis of global gene expression profiles upon infection by Fov indicated that the major transcriptional change occurred at 2 days post-inoculation (dpi), in comparison to 10 dpi. Briefly, the RNA-Seq analysis carried out in roots found that 3420 and 839 differentially expressed genes (DEGs) were detected at 2 and 10 dpi, respectively, as compared to the control. In the case of DEGs at 2 dpi, 1563 genes were found to be up-regulated, whereas 1857 genes were down-regulated. Moreover, functional categorization of DEGs at 2 dpi indicated that up-regulated genes are mainly associated to translation, whereas down-regulated genes are involved in cell wall remodeling. Among the translational-related transcripts, ribosomal proteins (RPs) were found increased their expression exclusively at 2 dpi. Conclusions The screening of transcriptional changes of V. planifolia Jacks upon infection by Fov provides insights into the plant molecular response, particularly at early stages of infection. The accumulation of translational-related transcripts at early stages of infection potentially points to a transcriptional reprogramming coupled with a translational regulation in vanilla plants upon infection by Fov. Altogether, the results presented here highlight potential molecular players that might be further studied to improve Fov-induced resistance in vanilla plants.


2019 ◽  
Author(s):  
Marco Tulio Solano-De la Cruz ◽  
Jacel Adame-García ◽  
Josefat Gregorio-Jorge ◽  
Verónica Jiménez-Jacinto ◽  
Leticia Vega-Alvarado ◽  
...  

Abstract Background Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae (Fov). This pathogen causes root and stem rot (RSR) in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with Fov, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Results Analysis of global gene expression profiles upon infection by Fov indicated that the major transcriptional change occurred at 2 days post-inoculation (dpi), in comparison to 10 dpi. Briefly, the RNA-Seq analysis carried out in roots found that 3420 and 839 differentially expressed genes (DEGs) were detected at 2 and 10 dpi, respectively, as compared to the control. In the case of DEGs at 2 dpi, 1563 genes were found to be up-regulated, whereas 1857 genes were down-regulated. Moreover, functional categorization of DEGs at 2 dpi indicated that up-regulated genes are mainly associated to translation, whereas down-regulated genes are involved in cell wall remodeling. Among the translational-related transcripts, ribosomal proteins (RPs) were found increased their expression exclusively at 2 dpi. Conclusions The screening of transcriptional changes of V. planifolia Jacks upon infection by Fov provides insights into the plant molecular response, particularly at early stages of infection. The accumulation of translational-related transcripts at early stages of infection potentially points to a transcriptional reprogramming coupled with a translational regulation in vanilla plants upon infection by Fov. Altogether, the results presented here highlight potential molecular players that might be further studied to improve Fov-induced resistance in vanilla plants.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Marco Tulio Solano-De la Cruz ◽  
Jacel Adame-García ◽  
Josefat Gregorio-Jorge ◽  
Verónica Jiménez-Jacinto ◽  
Leticia Vega-Alvarado ◽  
...  

Abstract Background Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae (Fov). This pathogen causes root and stem rot (RSR) in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with Fov, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Results Analysis of global gene expression profiles upon infection by Fov indicated that the major transcriptional change occurred at 2 days post-inoculation (dpi), in comparison to 10 dpi. Briefly, the RNA-Seq analysis carried out in roots found that 3420 and 839 differentially expressed genes (DEGs) were detected at 2 and 10 dpi, respectively, as compared to the control. In the case of DEGs at 2 dpi, 1563 genes were found to be up-regulated, whereas 1857 genes were down-regulated. Moreover, functional categorization of DEGs at 2 dpi indicated that up-regulated genes are mainly associated to translation, whereas down-regulated genes are involved in cell wall remodeling. Among the translational-related transcripts, ribosomal proteins (RPs) were found increased their expression exclusively at 2 dpi. Conclusions The screening of transcriptional changes of V. planifolia Jacks upon infection by Fov provides insights into the plant molecular response, particularly at early stages of infection. The accumulation of translational-related transcripts at early stages of infection potentially points to a transcriptional reprogramming coupled with a translational regulation in vanilla plants upon infection by Fov. Altogether, the results presented here highlight potential molecular players that might be further studied to improve Fov-induced resistance in vanilla plants.


2019 ◽  
Author(s):  
Marco Tulio Solano-De la Cruz ◽  
Jacel Adame-García ◽  
Josefat Gregorio-Jorge ◽  
Verónica Jiménez-Jacinto ◽  
Leticia Vega-Alvarado ◽  
...  

Abstract Background Upon exposure to unfavorable environmental conditions, plants need to respond quickly to maintain their homeostasis. For instance, physiological, biochemical and transcriptional changes occur during plant-pathogen interaction. In the case of Vanilla planifolia Jacks., a worldwide economically important crop, it is susceptible to Fusarium oxysporum f. sp. vanillae (Fov). This pathogen causes root and stem rot (RSR) in vanilla plants that lead to plant death. To investigate how vanilla plants, respond at the transcriptional level upon infection with Fov, here we employed the RNA-Seq approach to analyze the dynamics of whole-transcriptome changes during two-time frames of the infection. Results Analysis of global gene expression profiles upon infection by Fov indicated that the major transcriptional change occurred at 2 days post-inoculation (dpi), in comparison to 10 dpi. Briefly, the RNA-Seq analysis carried out in roots found that 3420 and 839 differentially expressed genes (DEGs) were detected at 2 and 10 dpi, respectively, as compared to the control. In the case of DEGs at 2 dpi, 1563 genes were found to be up-regulated, whereas 1857 genes were down-regulated. Moreover, functional categorization of DEGs at 2 dpi indicated that up-regulated genes are mainly associated to translation, whereas down-regulated genes are involved in cell wall remodeling. Among the translational-related transcripts, ribosomal proteins (RPs) were found increased their expression exclusively at 2 dpi. Conclusions The screening of transcriptional changes of V. planifolia Jacks upon infection by Fov provides insights into the plant molecular response, particularly at early stages of infection. The accumulation of translational-related transcripts at early stages of infection potentially points to a transcriptional reprogramming coupled with a translational regulation in vanilla plants upon infection by Fov. Altogether, the results presented here highlight potential molecular players that might be further studied to improve Fov-induced resistance in vanilla plants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zdenek Andrysik ◽  
Heather Bender ◽  
Matthew D. Galbraith ◽  
Joaquin M. Espinosa

AbstractCellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia-inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ a multi-omics pipeline including measurements of nascent RNA to characterize transcriptional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prognosis across diverse cancer types. In this work, we provide a valuable resource for investigating context-dependent roles of HIF1A and its targets in cancer biology.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1790-1802 ◽  
Author(s):  
N. Muzhinji ◽  
M. Truter ◽  
J. W. Woodhall ◽  
J. E. van der Waals

A survey of anastomosis groups (AG) of Rhizoctonia spp. associated with potato diseases was conducted in South Africa. In total, 112 Rhizoctonia solani and 19 binucleate Rhizoctonia (BNR) isolates were recovered from diseased potato plants, characterized for AG and pathogenicity. The AG identity of the isolates was confirmed using phylogenetic analysis of the internal transcribed spacer region of ribosomal DNA. R. solani isolates recovered belonged to AG 3-PT, AG 2-2IIIB, AG 4HG-I, AG 4HG-III, and AG 5, while BNR isolates belonged to AG A and AG R, with frequencies of 74, 6.1, 2.3, 2.3, 0.8, 12.2, and 2.3%, respectively. R. solani AG 3-PT was the most predominant AG and occurred in all the potato-growing regions sampled, whereas the other AG occurred in distinct locations. Different AG grouped into distinct clades, with high maximum parsimony and maximum-likelihood bootstrap support for both R. solani and BNR. An experiment under greenhouse conditions with representative isolates from different AG showed differences in aggressiveness between and within AG. Isolates of AG 2-2IIIB, AG 4HG-III, and AG R were the most aggressive in causing stem canker while AG 3-PT, AG 5, and AG R caused black scurf. This is the first comprehensive survey of R. solani and BNR on potato in South Africa using a molecular-based approach. This is the first report of R. solani AG 2-2IIIB and AG 4 HG-I causing stem and stolon canker and BNR AG A and AG R causing stem canker and black scurf on potato in South Africa.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hao Zhou ◽  
Shuang-Feng Yang ◽  
Shao-Mei Wang ◽  
Ke Yao ◽  
Xiao-Yu Ye ◽  
...  

Bletilla striata (Thunb.) Rchb. f. (Orchidaceae), a perennial plant, is a traditional Chinese herb (known as baiji) used to treat hemorrhage, scalding injuries, gastric ulcers, pulmonary diseases, and inflammation (Zu et al. 2019). In May 2019, foliar blight symptoms were observed on approximately 25% of B. striata (cv. Guiji No.1) plants in three plantations (∼4.5 hectares in total) in Ziyuan County, Guangxi Province, China. Initial symptoms were light brown, irregular, water-soaked spots on the plant leaves. Several spots often merged, forming large, irregular, lesions that extended onto the stem after a week and led to leaf abscission, and even plant death. To determine the causal agent, 5-mm squares cut from the margin of 6 infected leaves were surface disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 28°C (12-h light-dark cycle) for 3 days. The emerging hyphal tip of a single mycelium was transferred to PDA to obtain pure cultures of the isolates. Twenty isolates were obtained, and 10 isolates (50%) were initially white before turning light brown (∼4 days). Septate hyphae were 4.29 to 10.75 μm (average 6.42 μm) in diameter and branched at right angles with a constriction at the origin of the branch point. Staining with 1% safranin O and 3% KOH solution (Bandoni 1979) revealed multinucleated cells (3 to 9 nuclei per cell, n = 142). This morphology was typical of Rhizoctonia solani Kühn (Meyer et al. 1990). For species confirmation by molecular identification, three isolates (BJ101.6, BJ101.11, and BJ102.2) were cultured on PDA for 4 days, then DNA was extracted from the mycelium using the CTAB method (Guo et al. 2000), and the ribosomal ITS1-5.8S-ITS2 region was amplified by PCR using the universal fungal primers ITS1 and ITS4 (White et al. 1990). Internal transcribed spacer (ITS) sequences of strains BJ101.6, BJ101.11, and BJ102 (deposited in GenBank under accession nos MT406271, MT892815, and MT892814, respectively) had over 99% similarity with those of R. solani AG-2-2 IIIB in GenBank (accession nos JX913810 and AB054858) (Carling et al. 2002; Hong et al. 2012). Phylogenetic analysis using ITS sequences showed that the isolates clustered monophyletically with strains of R. solani AG-2-2 IIIB. The AG of the isolates was confirmed by their ability to grow well on PDA at 35°C, which separates AG-2-2 IIIB from AG-2-2 IV (Inokuti et al. 2019). Based on morphological characteristics and nucleotide sequence analysis, the isolates were identified as R. solani AG-2-2 IIIB. Pathogenicity was tested using 1.5-year-old B. striata (cv. Guiji No.1) plants grown in a perlite and peat moss mixture (1:3) in 7-cm pots. Healthy leaves on plants were inoculated with an aqueous suspension (approximately 1 × 105 hyphal fragments/mL, 100 μL) prepared from cultures of strains BJ101.6, BJ101.11, and BJ102.2, each isolate was inoculated onto three plants; three other plants with sterile water served as controls. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 28°C for 14 days (12-h photoperiod). Three days post-inoculation, leaves exposed to the mycelial fragments had symptoms similar to those originally observed in the field. No symptoms were detected on control plants. Experiments were replicated three times with similar results. To fulfill Koch’s postulates, R. solani AG-2-2 IIIB was re-isolated on PDA from symptomatic leaves and confirmed by sequencing, whereas no fungus was isolated from the control plants. To our knowledge, this is the first report of R. solani AG-2-2 IIIB causing foliar blight on B. striata in China, and these findings will be useful for further control strategies and research.


Author(s):  
Narendra Singh ◽  
Vikee M. Patel

Black scurf (Rhizoctonia solani) disease of potato is becoming prominent in many potato growing districts of Gujarat state which reduce quality and market value of the produce, resulting in economic losses. The field experiment was conducted during rabi season of 2014-15 in naturally infested field with scurf pathogen at Potato Research Station, S.D. Agricultural University, Deesa (Gujarat) with the objective to find out suitable management strategies for black scurf through organic approaches (bio-agents and organic amendments). Among different bio-agents (Trichoderma viride, T. harzianum. Pseudomonas fluorescens and Bacillus subtilis) tested against black scurf, the tuber treatment with 2 per cent boric acid spray along with tuber treatment with T. viride @ 10 g/kg seed before sowing recorded the lowest disease incidence (15.33 %) and index (0.38) with highest total tuber yield (324.68 q/ha) with maximum income `2,57,414/ha. When price computed with healthy and diseased tuber yield among treatments, the maximum income variation was (`92,986/ha) recorded by the same treatment followed by the tuber treatment with 3 % boric acid spray before sowing (`68,440/ha). In case of various organic amendments tested, soil application of mustard cake @ 10 q/ha registered minimum disease incidence (37.33 %) and disease index (0.66) as compared to rest of the organic treatment with highest total tuber yield (`327.20 q/ha) with maximum income `2,65,010/ha. When price computed with healthy and diseased tuber yield among treatments, the maximum income variation was (`1,12,990/ha) recorded by the same treatment followed by the neem cake @ 10 q/ha (`56,660/ha). These organic treatments can provide an effective and economical management of black scurf of potato for cultivaters.


Author(s):  
Prashant Kumar Singh ◽  
Jagdish Kumar Patidar ◽  
Reeti Singh ◽  
S. Roy

2021 ◽  
Vol 4 ◽  
Author(s):  
Shae Swanepoel ◽  
Caryn N. Oates ◽  
Louise S. Shuey ◽  
Geoff S. Pegg ◽  
Sanushka Naidoo

Eucalyptus grandis, in its native Australian range, varies in resistance to Austropuccinia psidii (syn. Puccinia psidii). The biotrophic rust fungus, A. psidii is the causal agent of myrtle rust and poses a serious threat to Australian biodiversity. The pathogen produces yellow pustules of urediniospores on young leaves and shoots, resulting in shoot tip dieback, stunted growth, and death. Dissecting the underlying mechanisms of resistance against this pathogen will contribute to improved breeding and control strategies to mitigate its devastating effects. The aim of this study was to determine the molecular dialogue between E. grandis and A. psidii, using an RNA-sequencing approach. Resistant and susceptible E. grandis seedlings grown from seed collected across its natural range were inoculated with the pandemic biotype of A. psidii. The leaf tissue was harvested at 12-h post inoculation (hpi), 1-day post inoculation (dpi), 2-dpi and 5-dpi and subjected to RNA-sequencing using Illumina 50 bp PE reads to a depth of 40 million reads per sample. Differential gene expression and gene ontology enrichment indicated that the resistant seedlings showed controlled, coordinated responses with a hypersensitive response, while the susceptible seedlings showed no systemic response against myrtle rust. Brassinosteroid signaling was apparent as an enriched term in the resistant interaction at 2-dpi, suggesting an important role of this phytohormone in defense against the pathogen. Brassinosteroid mediated signaling genes were also among the candidate genes within two major disease resistance loci (Puccinia psidii resistance), Ppr3 and Ppr5. While brassinosteroids have been tagged as positive regulators in other plant disease resistance interactions, this is the first report in the Eucalyptus – Austropuccinia psidii interaction. Furthermore, several putative resistance genes, underlying known resistance loci and implicated in the interaction have been identified and highlighted for future functional studies. This study provided further insights into the molecular interactions between E. grandis and A. psidii, contributing to our understanding of this pathosystem.


Sign in / Sign up

Export Citation Format

Share Document