scholarly journals Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction

2021 ◽  
Vol 22 (7) ◽  
pp. 3312
Author(s):  
Angela K. Odle ◽  
Melanie C. MacNicol ◽  
Gwen V. Childs ◽  
Angus M. MacNicol

The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.

2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ling-Yu Liu ◽  
Xi Long ◽  
Ching-Po Yang ◽  
Rosa L Miyares ◽  
Ken Sugino ◽  
...  

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α’/β’ mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.


2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


2021 ◽  
Vol 22 (21) ◽  
pp. 11963
Author(s):  
Noof Aloufi ◽  
Aeshah Alluli ◽  
David H. Eidelman ◽  
Carolyn J. Baglole

Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.


Author(s):  
Marialaura Amadio ◽  
Giovanni Scapagnini ◽  
Sergio Davinelli ◽  
Vittorio Calabrese ◽  
Stefano Govoni ◽  
...  

2015 ◽  
Vol 6 ◽  
Author(s):  
Elke Van Assche ◽  
Sandra Van Puyvelde ◽  
Jos Vanderleyden ◽  
Hans P. Steenackers

2021 ◽  
Vol 12 ◽  
Author(s):  
Huiyuan Wang ◽  
Sheng Liu ◽  
Xiufang Dai ◽  
Yongkang Yang ◽  
Yunjun Luo ◽  
...  

Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database, which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.


2016 ◽  
Author(s):  
David Heller ◽  
Martin Vingron ◽  
Ralf Krestel ◽  
Uwe Ohler ◽  
Annalisa Marsico

AbstractRNA-binding proteins (RBPs) play important roles in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. To which extent RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders which produce informative motifs and simultaneously capture the relationship between primary sequence and different RNA secondary structures are missing. We developed ssHMM, an RNA motif finder that combines a hidden Markov model (HMM) with Gibbs sampling to learn the joint sequence and structure binding preferences of RBPs from high-throughput data, such as CLIP-Seq sequences, and visualizes them as a graph. Evaluations on synthetic data showed that ssHMM reliably recovers fuzzy sequence motifs in 80 to 100% of the cases. It produces motifs with higher information content than existing tools and is faster than other methods on large datasets. Examples of new sequence-structure motifs identified by ssHMM for uncharacterized RBPs are also discussed. ssHMM is freely available on Github at https://github.molgen.mpg.de/heller/ssHMM.


Sign in / Sign up

Export Citation Format

Share Document