scholarly journals Metalloproteinases in Ovarian Cancer

2021 ◽  
Vol 22 (7) ◽  
pp. 3403
Author(s):  
Preston Carey ◽  
Ethan Low ◽  
Elizabeth Harper ◽  
M. Sharon Stack

Proteases play a crucial role in the progression and metastasis of ovarian cancer. Pericellular protein degradation and fragmentation along with remodeling of the extracellular matrix (ECM) is accomplished by numerous proteases that are present in the ovarian tumor microenvironment. Several proteolytic processes have been linked to cancer progression, particularly those facilitated by the matrix metalloproteinase (MMP) family. These proteases have been linked to enhanced migratory ability, extracellular matrix breakdown, and development of support systems for tumors. Several studies have reported the direct involvement of MMPs with ovarian cancer, as well as their mechanisms of action in the tumor microenvironment. MMPs play a key role in upregulating transcription factors, as well as the breakdown of structural proteins like collagen. Proteolytic mechanisms have been shown to enhance the ability of ovarian cancer cells to migrate and adhere to secondary sites allowing for efficient metastasis. Furthermore, angiogenesis for tumor growth and development of metastatic implants is influenced by upregulation of certain proteases, including MMPs. While proteases are produced normally in vivo, they can be upregulated by cancer-associated mutations, tumor–microenvironment interaction, stress-induced catecholamine production, and age-related pathologies. This review outlines the important role of proteases throughout ovarian cancer progression and metastasis.

2021 ◽  
Author(s):  
Changzhong Li ◽  
Ruobing Leng ◽  
Yunfang Meng ◽  
Na Li ◽  
Feifei Li ◽  
...  

Abstract The RAC1 signal pathway is involved in various tumor cell biological processes. Here, the role of RAC1-miR-3613-RAC1 negative feedback loop in ovarian cancer was explored. Results showed that RAC1 knockdown up-regulated miR-3613, which in turn inhibited RAC1 expression. RAC1 counteracted the inhibitory effect of miR-3613 on the proliferation and invasion of ovarian cancer cells in vitro and on the tumor growth in vivo. In ovarian cancer, miR-3613 expression was negatively correlated with RAC1, and patients with low miR-3613 expression had poor prognosis. These findings indicate the role of RAC1-miR-3613-RAC1 negative feedback loop in the malignant progression of ovarian cancer and its possible therapeutic values.


2020 ◽  
Author(s):  
Kholoud Alwosaibai ◽  
Ensaf Munawer Al-Hujaily ◽  
Salmah Alamri ◽  
Kenneth Garson ◽  
Barbara C. Vanderhyden

AbstractIn adult tissues, PAX2 protein is expressed in normal oviductal epithelial cells but not in normal ovarian surface epithelial cells. Studies have reported that PAX2 is expressed in a subset of serous ovarian carcinoma cases but the role of PAX2 in the initiation and progression of ovarian cancer remains unknown. The aim of this study was to understand the biological consequences of Pax2 expression in normal and cancerous mouse epithelial (MOSE) cells. We found that Pax2 overexpression in both normal and cancerous ovarian epithelial cells induced the formation of vascular channels both in vitro and in vivo. The results indicate a possible contribution of PAX2 to ovarian cancer progression by increasing the vascular channels to supply nutrients to the tumor cells.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770550 ◽  
Author(s):  
Yi Li ◽  
Ming Xiao ◽  
Fangchun Guo

SOX6 plays important roles in cell proliferation, differentiation, and cell fate determination. It has been confirmed that SOX6 is a tumor suppressor and downregulated in various cancers, including esophageal squamous cell carcinoma, hepatocellular carcinoma, and chronic myeloid leukemia. Netrin-1 is highly expressed in various human cancers and acts as an anti-apoptotic and proangiogenic factor to drive tumorigenesis. The role of SOX6 and netrin-1 in regulating the growth of ovarian tumor cells still remains unclear. Real-time polymerase chain reaction and western blot were used to determine the SOX6 messenger RNA and protein levels, respectively, in ovarian cancer cells and tumor tissues. Stable transfection of SOX6 was conducted to overexpress SOX6 in PA-1 and SW626 cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Invasion of ovarian cancer cells and migration of human umbilical vein endothelial cells were confirmed by Transwell assays. To overexpress netrin-1, ovarian cancer cells with SOX6 restoration was transduced with netrin-1 lentiviral particles. PA-1 xenografts in a nude mice model were used to conduct in vivo evaluation of the role of SOX6 and its relationship with netrin-1 in tumor growth and angiogenesis. In this study, we found significantly reduced SOX6 levels in PA-1, SW626, SK-OV-3, and CaoV-3 ovarian cancer cell lines and human tumor tissues in comparison with normal human ovarian epithelial cells or matched non-tumor tissues. SOX6 overexpression by stable transfection dramatically inhibited proliferation and invasion of PA-1 and SW626 cells. Also, conditioned medium from PA-1 and SW626 cells with SOX6 restoration exhibited reduced ability to induce human umbilical vein endothelial cells migration and tube formation compared with conditioned medium from the cells with transfection control. Furthermore, an inverse relationship between SOX6 and netrin-1 expression was observed in PA-1 and SW626 cells. Overexpression of netrin-1 in ovarian cancer cells with forced SOX6 expression remarkably abrogated the inhibitory effect of SOX6 on proliferation, invasion of the cells, and tumor xenograft growth and vascularity in vivo. Human umbilical vein endothelial cell migration and tube formation were enhanced in the conditioned medium from the ovarian cancer cells transduced with netrin-1 lentivirus particles. Our observations revealed that SOX6 is a tumor suppressor in ovarian cancer cells, and SOX6 exerts an inhibitory effect on the proliferation, invasion, and tumor cell-induced angiogenesis of ovarian cancer cells, whereas nerin-1 plays an opposite role and its expression is inversely correlated with SOX6. Moreover, our findings suggest a new role of SOX6 and netrin-1 for understanding the progression of ovarian cancer and have the potential for the development of new diagnosis and treatment strategies for ovarian cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuehan Bi ◽  
Xiao Lv ◽  
Dajiang Liu ◽  
Hongtao Guo ◽  
Guang Yao ◽  
...  

AbstractOvarian cancer is a common gynecological malignant tumor with a high mortality rate and poor prognosis. There is inadequate knowledge of the molecular mechanisms underlying ovarian cancer. We examined the expression of methyltransferase-like 3 (METTL3) in tumor specimens using RT-qPCR, immunohistochemistry, and Western blot analysis, and tested the methylation of METTL3 by MSP. Levels of METTL3, miR-1246, pri-miR-1246 and CCNG2 were then analyzed and their effects on cell biological processes were also investigated, using in vivo assay to validate the in vitro findings. METTL3 showed hypomethylation and high expression in ovarian cancer tissues and cells. Hypomethylation of METTL3 was pronounced in ovarian cancer samples, which was negatively associated with patient survival. Decreased METTL3 inhibited the proliferation and migration of ovarian cancer cells and promoted apoptosis, while METTL3 overexpression exerted opposite effects. Mechanistically, METTL3 aggravated ovarian cancer by targeting miR-1246, while miR-1246 targeted and inhibited CCNG2 expression. High expression of METTL3 downregulated CCNG2, promoted the metabolism and growth of transplanted tumors in nude mice, and inhibited apoptosis. The current study highlights the promoting role of METTL3 in the development of ovarian cancer, and presents new targets for its treatment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1421-1421
Author(s):  
Min Soon Cho ◽  
Qianghua Hu ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract We have shown that complement component 3 (C3) is expressed in malignant ovarian epithelial cells and enhances cell proliferation in vitro and tumor growth in vivo. C3 is secreted by cancer cells into the tumor microenvironment and promotes tumor growth through an autocrine loop. To understand the mechanism of upregulation of C3 expression in malignant epithelial cells, we studied the transcriptional regulation of C3, and found that TWIST1, a major regulator of EMT, binds to the C3 promoter and regulates C3 transcription. Knockdown of the TWIST1 gene reduced C3 mRNA, and TWIST1 overexpression increased C3 mRNA. TWIST1 promotes epithelial-mesenchymal transition (EMT) during normal development and in metastasis of malignant tumors. An important marker of EMT is a reduction in the surface expression of E-cadherin on cells facilitating migration and invasion of these cells. TWIST1 is a transcriptional repressor of E-cadherin; and because TWIST1 increases C3 expression, we investigated whether C3 is also a negative regulator of E-cadherin expression. We overexpressed C3 in ovarian cancer cells by stable transduction of lentivirus carrying C3 cDNA. Overexpression of C3 was associated with 32% reduction in the expression of E-cadherin resulting in enhanced migration ability of cells by 2.3 folds and invasiveness by 1.75 folds, as compared to control cells transduced with control lentivirus. To investigate whether TWIST1-induced reduction in E-cadherin is C3-mediated or not, we studied the effect of TWIST1 overexpression simultaneous with C3 knockdown in ovarian cancer cells. Overexpression of TWIST1 alone resulted in 70% reduction in E-cadherin mRNA and this was completely reversed after simultaneous C3 knockdown in these cells. To investigate the correlation between C3 and TWIST1 in vivo, we studied the co-expression of these two proteins in mouse embryos (physiologic EMT) and in malignant tumors (pathologic EMT). Given the role of EMT in embryogenesis we immunostained mouse embryos at different stages of development, using antibodies against TWIST1 or C3. Transverse section of 9.5-day post-coitum (9.5dpc) mouse embryos showed co-expression of TWIST1 and C3 in otocyst (ot) and hindbrain (hb) of neural crest. In the whole-mounted 11.5dpc mouse embryos, C3 and TWIST1 were co-expressed in limb buds. Given the role of EMT in malignancy, tumors induced in mice after intraperitoneal injection of murine ovarian cancer cells were resected and immunostained for C3 and TWIST1 proteins. TWIST1 and C3 co-localized at tumor edges, where EMT and tumor cells migration occur. Taken together, these data provide evidence that TWIST1 regulates C3 expression, and C3 promotes EMT through E-cadherin. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Sara Pedron ◽  
Gabrielle L. Wolter ◽  
Jee-Wei E. Chen ◽  
Sarah E. Laken ◽  
Jann N. Sarkaria ◽  
...  

AbstractTherapeutic options to treat primary glioblastoma (GBM) tumors are scarce. GBM tumors with epidermal growth factor receptor (EGFR) mutations, in particular a constitutively active EGFRvIII mutant, have extremely poor clinical outcomes. GBM tumors with concurrent EGFR amplification and active phosphatase and tensin homolog (PTEN) are sensitive to the tyrosine kinase inhibitor erlotinib, but the effect is not durable. A persistent challenge to improved treatment is the poorly understood role of cellular, metabolic, and biophysical signals from the GBM tumor microenvironment on therapeutic efficacy and acquired resistance. The intractable nature of studying GBM cell in vivo motivates tissue engineering approaches to replicate aspects of the complex GBM tumor microenvironment. Here, we profile the effect of erlotinib on two patient-derived GBM specimens: EGFR+ GBM12 and EGFRvIII GBM6. We use a three-dimensional gelatin hydrogel to present brain-mimetic hyaluronic acid (HA) and evaluate the coordinated influence of extracellular matrix signals and EGFR mutation status on GBM cell migration, survival and proliferation, as well as signaling pathway activation in response to cyclic erlotinib exposure. Comparable to results observed in vivo for xenograft tumors, erlotinib exposure is not cytotoxic for GBM6 EGFRvIII specimens. We also identify a role of extracellular HA (via CD44) in altering the effect of erlotinib in GBM EGFR+ cells by modifying STAT3 phosphorylation status. Taken together, we report an in vitro tissue engineered platform to monitor signaling associated with poor response to targeted inhibitors in GBM.


2020 ◽  
Vol 21 (14) ◽  
pp. 4992
Author(s):  
Sadia Mehdi ◽  
Elizabeth Macdonald ◽  
Kristianne Galpin ◽  
David A. Landry ◽  
Galaxia Rodriguez ◽  
...  

The implications of the epithelial–mesenchymal transition (EMT) mechanisms in the initiation and progression of epithelial ovarian cancer (EOC) remain poorly understood. We have previously shown that suppression of the antigen receptor LY75 directs mesenchymal–epithelial transition (MET) in EOC cell lines with the mesenchymal phenotype, associated with the loss of Wnt/β-catenin signaling activity. In the present study, we used the LY75-mediated modulation of EMT in EOC cells as a model in order to investigate in vivo the specific role of EOC cells, with an epithelial (E), mesenchymal (M) or mixed epithelial plus mesenchymal (E+M) phenotype, in EOC initiation, dissemination and treatment response, following intra-bursal (IB) injections of SKOV3-M (control), SKOV3-E (Ly75KD) and a mixed population of SKOV3-E+M cells, into severe combined immunodeficiency (SCID) mice. We found that the IB-injected SKOV3-E cells displayed considerably higher metastatic potential and resistance to treatment as compared to the SKOV3-M cells, due to the acquisition of a Ly75KD-mediated hybrid phenotype and stemness characteristics. We also confirmed in vivo that the LY75 depletion directs suppression of the Wnt/β-catenin pathway in EOC cells, suggestive of a protective role of this pathway in EOC etiology. Moreover, our data raise concerns regarding the use of LY75-targeted vaccines for dendritic-cell EOC immunotherapy, due to the possible occurrence of undesirable side effects.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3626
Author(s):  
Sun-Ae Park ◽  
Lee Kyung Kim ◽  
Young Tae Kim ◽  
Tae-Hwe Heo ◽  
Hee Jung Kim

(1) Background: LncRNAs could be a promising biomarker to predict the prognosis of various cancers. The significance of E2F4antisense lncRNA remains unclear in cancer. In this study, we examined the expression level of E2F4as in the serum of ovarian cancer patients and the functional role of E2F4as. (2) Methods: Serum samples were obtained from 108 OC patients and 32 normal patients to measure the expression of E2F4as in the serum. Ovarian cancer cells were used to investigate the role of E2F4as in cell proliferation, invasion, migration and apoptosis, and the expression of E2F4as was knocked down using RNA interference. In addition, E2F4as knockdown cell lines were used in in vivo experiments. (3) Results: The expression of E2F4as was significantly higher in the serum of OC patients than in that of control patients (p < 0.05). The knockdown of E2F4as in ovarian cancer cells led to a decrease in cell proliferation, invasion and migration and an increase in apoptosis. E2F4as knockdown also reduced the expression of epithelium–mesenchymal metastasis (EMT) genes. (4) Conclusion: These findings highlight the clinical significance of E2F4as in predicting the prognosis of OC patients and suggest its potential in promoting tumour aggressiveness by the regulation of EMT-related mechanisms.


2019 ◽  
Vol 20 (5) ◽  
pp. 1042 ◽  
Author(s):  
Apriliana Cahya Khayrani ◽  
Hafizah Mahmud ◽  
Aung Ko Ko Oo ◽  
Maram H. Zahra ◽  
Miharu Oze ◽  
...  

Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15–20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.


2021 ◽  
pp. 153537022110238
Author(s):  
Wenjing Zhang ◽  
Carolina Torres-Rojas ◽  
Junming Yue ◽  
Bing-Mei Zhu

Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.


Sign in / Sign up

Export Citation Format

Share Document