scholarly journals Oxidase Reactivity of CuII Bound to N-Truncated Aβ Peptides Promoted by Dopamine

2021 ◽  
Vol 22 (10) ◽  
pp. 5190
Author(s):  
Chiara Bacchella ◽  
Simone Dell’Acqua ◽  
Stefania Nicolis ◽  
Enrico Monzani ◽  
Luigi Casella

The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.

2014 ◽  
Vol 289 (44) ◽  
pp. 30680-30689 ◽  
Author(s):  
Sunhee Lee ◽  
Madhavi Challa-Malladi ◽  
Shawn B. Bratton ◽  
Casey W. Wright

Activation of the noncanonical NF-κB pathway hinges on the stability of the NF-κB-inducing kinase (NIK), which is kept at low levels basally by a protein complex consisting of the E3 ubiquitin ligases cellular inhibitor of apoptosis 1 and 2 (c-IAP1/2) proteins and the tumor necrosis factor receptor-associated factors 2 and 3 (TRAF2/3). NIK is brought into close proximity to the c-IAPs through a TRAF2-TRAF3 bridge where TRAF2 recruits c-IAP1/2 and TRAF3 binds to NIK. However, it is not clear how the c-IAPs specifically recognize and ubiquitylate NIK in the complex. We have identified an IAP-binding motif (IBM) at the amino terminus of NIK. IBMs are utilized by a number of proapoptotic proteins to antagonize IAP function. Here, we utilize mutational studies to demonstrate that wild-type NIK is destabilized in the presence of c-IAP1, whereas the NIK IBM mutant is stable. NIK interacts with the second baculovirus IAP repeat (BIR2) domain of c-IAP1 via the IBM, and this interaction, in turn, provides substrate recognition for c-IAP1 mediated ubiquitylation and degradation of NIK. Furthermore, in the presence of the NIK IBM mutant, we observed an elevated processing of p100 to p52 followed by increased expression of NF-κB target genes. Together, these findings reveal the novel identification and function of the NIK IBM, which promotes c-IAP1-dependent ubiquitylation of NIK, resulting in optimal NIK turnover to ensure that noncanonical NF-κB signaling is off in the absence of an activating signal.


1997 ◽  
Vol 83 (5) ◽  
pp. 847-855 ◽  
Author(s):  
Carla Bertazzoni ◽  
Edoardo Marchesi ◽  
Said Dermime ◽  
Fernando Ravagnani ◽  
Giorgio Parmiani ◽  
...  

Aims and background Structurally altered proteins (derived from chromosomal translocations or gene mutations) can be considered tumor specific antigens and represent an attractive target for a T-cell mediated response. T lymphocytes recognize antigens in the form of peptides bound to HLA-mole-cules. Materials and methods Peptides derived from oncogenic proteins were screened fro the presence of HLA binding motifs; actual binding were evaluated by HLA stabilization experiments using transfectants and specific anti-HLA antibodies. Specific lymphocytes were induced by in vitro peptide sensitization and screened by thymidine uptake or cellular cytotoxic assays. Results We identified peptides derived from EWS/FLI-1 fusion protein and from mutated K-RAS protein (encompassing respectively the fusion point and the mutation at position 12) that showed binding motif for HLA-Cw*0702 and HLA-A3 respectively. The actual binding of these peptides was analysed in a stabilization assay. We detected binding for the EWS/FLI-I peptide and for 5 RAS peptides (1 wild type and 4 mutated). The effect of temperature, β2-microglobulin (β2-m) and fetal calf serum (FCS) on the binding and the stability of the HLA/peptide complex was studied. A low temperature (26°C) increased the binding both in HLA-A3 and HLA-Cw*0702, while FCS reduced it. β2-m increased the binding to the HLA-A3 molecule but did not influence the binding to the HLA-Cw*0702. The stability of already formed complexed was somewhat different in the HLA-A3 and HLA-Cw*0702 system: both were more stable at 26°C than at 37°C but while the β2-m and FCS did not influence the stability of the HLA-A3/peptide complex, they seemed to cause opposite effects in the HLA-Cw*0702 system (β2-m stabilized and FCS destabilized the complex). Finally, we were able to generate a specific CD8+ CTL line against a K-RAS mutated peptide. Conclusions Although binding motifs and actual HLA binding can be detected in several cases, the generation of a cellular response is infrequent, confirming that HLA binding is necessary but not sufficient to obtain an in vitro response. Further optimization of culture conditions, type of Antigen Presenting Cells (APC), peptides, use of stabilizers like β2-m are still needed.


2015 ◽  
Vol 17 (26) ◽  
pp. 16886-16893 ◽  
Author(s):  
Xu Wang ◽  
Xianqiang Sun ◽  
Guanglin Kuang ◽  
Hans Ågren ◽  
Yaoquan Tu

The investigation of the (ZAβ3)2:Aβ complex highlights the energetic contribution of affibody residues to the binding with alzheimer's disease associated Aβ peptides.


2021 ◽  
Author(s):  
Rolando Oyola ◽  
Deguo Du ◽  
Idalia Ramos ◽  
Kyabeth Torres ◽  
Ambar S Delgado ◽  
...  

Alzheimer’s disease (AD) has been consistently related to the formation of senile amyloid plaques mainly composed of amyloid β (Aβ) peptides. The toxicity of Aβ aggregates has been indicated to...


1992 ◽  
Vol 12 (3) ◽  
pp. 1087-1095
Author(s):  
M Werner ◽  
S Hermann-Le Denmat ◽  
I Treich ◽  
A Sentenac ◽  
P Thuriaux

The conserved amino-terminal region of the largest subunit of yeast RNA polymerase C is capable of binding zinc ions in vitro. By oligonucleotide-directed mutagenesis, we show that the putative zinc-binding motif CX2CX6-12CXGHXGX24-37CX2C, present in the largest subunit of all eukaryotic and archaebacterial RNA polymerases, is essential for the function of RNA polymerase C. All mutations in the invariant cysteine and histidine residues conferred a lethal phenotype. We also obtained two conditional thermosensitive mutants affecting this region. One of these produced a form of RNA polymerase C which was thermosensitive and unstable in vitro. This instability was correlated with the loss of three of the subunits which are specific to RNA polymerase C: C82, C34, and C31.


2013 ◽  
Vol 8 (4) ◽  
pp. 64-75
Author(s):  
Sergey Gaponov ◽  
Natalya Terekhova

This work continues the research on modeling of passive methods of management of flow regimes in the boundary layers of compressed gas. Authors consider the influence of pressure gradient on the evolution of perturbations of different nature. For low Mach number M = 2 increase in pressure contributes to an earlier transition of laminar to turbulent flow, and, on the contrary, drop in the pressure leads to a prolongation of the transition to turbulence. For high Mach number M = 5.35 found that the acoustic disturbances exhibit a very high dependence on the sign and magnitude of the external gradient, with a favorable gradient of the critical Reynolds number becomes smaller than the vortex disturbances, and at worst – boundary layer is destabilized directly on the leading edge


Author(s):  
Taylore Dodd ◽  
Tingzhong Wang ◽  
Shetuan Zhang

Kv1.5 is a voltage-gated potassium channel that generates the ultra-rapid delayed rectifier potassium current (IKur) important in the repolarization of the atrial action potential. Malfunction of the Kv1.5 channel often results in atrial fibrillation (AFib). A reduction in Kv1.5 current (IKv1.5) occurs upon activation of the endogenous tyrosine-protein kinase Src. The Src SH3 domain binds to proline-rich motifs located within the N-terminus of Kv1.5. Disruption of these binding motifs has been involved in the development of familial AFib. The mechanism underlying the reduction of IKv1.5 upon Src activation has not yet been established and the relationship between Kv1.5 and Src is poorly understood. Therefore, the present study aims to further elucidate the mechanism behind IKv1.5  reduction. The hypothesis that Src regulates Kv1.5 activity by altering the density of mature membrane-localized channels was tested using whole-cell voltage clamp and Western blot analysis. We demonstrate that Src tonically inhibits Kv1.5 activity and decreases the density of mature membrane-localized channels. Kv1.5 channels possessing mutations within the Src binding motifs were also investigated and it was determined that each binding motif contributes to the Kv1.5-Src relationship, however, the binding of Src to an individual motif is sufficiently effective. Our findings indicate that Src regulates Kv1.5 through an interaction with the N-terminal binding motifs and suggests that the inhibition of forward trafficking may be involved in the underlying mechanism. (Supported by the Heart and Stroke foundation of Canada and The Canadian Institutes of Health Research).


1993 ◽  
Vol 13 (3) ◽  
pp. 1480-1488
Author(s):  
H M van der Velden ◽  
M J Lohka

Progression through mitosis requires the inactivation of the protein kinase activity of the p34cdc2-cyclin complex by a mechanism involving the degradation of cyclin. We have examined the stability in Xenopus egg extracts of radiolabeled Xenopus or sea urchin B-type cyclins synthesized in reticulocyte lysates. Xenopus cyclin B2 and sea urchin cyclin B were stable in metaphase extracts from unfertilized eggs but were specifically degraded following addition of Ca2+ to the extracts. The degradation of either cyclin was inhibited by the addition of an excess of unlabeled Xenopus cyclin B2 but not by the addition of a number of control proteins. A truncated protein containing only the amino terminus of Xenopus cyclin B2, including sequences known to be essential for cyclin degradation in other species, also inhibited cyclin degradation, even though the truncated protein was stable in extracts following Ca2+ addition. The addition of the truncated protein did not stimulate histone H1 kinase activity in extracts but prevented the loss of H1 kinase activity that normally follows Ca2+ addition to metaphase extracts. When the amino-terminal fragment was added to extracts capable of several cell cycles in vitro, progression through the first mitosis was inhibited and elevated histone H1 kinase activity was maintained. These results indicate that although the amino terminus of cyclin does not contain all of the information necessary for cyclin destruction, it is capable of interacting with components of the cyclin destruction pathway and thereby preventing the degradation of full-length cyclins.


Sign in / Sign up

Export Citation Format

Share Document