scholarly journals Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer’s Disease

2021 ◽  
Vol 22 (12) ◽  
pp. 6311
Author(s):  
Laura Gómez-Virgilio ◽  
Alejandro Luarte ◽  
Daniela P. Ponce ◽  
Bárbara A. Bruna ◽  
María I. Behrens

Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.

2013 ◽  
Vol 20 (37) ◽  
pp. 4648-4664 ◽  
Author(s):  
S. Chakrabarti ◽  
M. Sinha ◽  
I. Thakurta ◽  
P. Banerjee ◽  
M. Chattopadhyay

2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nataly Guzmán-Herrera ◽  
Viridiana C. Pérez-Nájera ◽  
Luis A. Salazar-Olivo

Background: Numerous studies have shown a significant association between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD), two pathologies affecting millions of people worldwide. Chronic inflammation and oxidative stress are two conditions common to these diseases also affecting the activity of the serpin alpha-1-antichymotrypsin (ACT), but a possible common role for this serpin in T2D and AD remains unclear. Objective: To explore the possible regulatory networks linking ACT to T2D and AD. Materials and Methods: A bibliographic search was carried out in PubMed, Med-line, Open-i, ScienceDirect, Scopus and SpringerLink for data indicating or suggesting association among T2D, AD, and ACT. Searched terms like “alpha-1-antichymotrypsin”, “type 2 diabetes”, “Alzheimer's disease”, “oxidative stress”, “pro-inflammatory mediators” among others were used. Moreover, common therapeutic strategies between T2D and AD as well as the use of ACT as a therapeutic target for both diseases were included. Results: ACT has been linked with development and maintenance of T2D and AD and studies suggest their participation through activation of inflammatory pathways and oxidative stress, mechanisms also associated with both diseases. Likewise, evidences indicate that diverse therapeutic approaches are common to both diseases. Conclusion: Inflammatory and oxidative stresses constitute a crossroad for T2D and AD where ACT could play an important role. In-depth research on ACT involvement in these two dysfunctions could generate new therapeutic strategies for T2D and AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2020 ◽  
Vol 4 (1) ◽  
pp. 525-536
Author(s):  
Steven J. Madsen ◽  
Phillip S. DiGiacomo ◽  
Yitian Zeng ◽  
Maged Goubran ◽  
Yuanxin Chen ◽  
...  

Background: Recent evidence suggests that the accumulation of iron, specifically ferrous Fe2+, may play a role in the development and progression of neurodegeneration in Alzheimer’s disease (AD) through the production of oxidative stress. Objective: To localize and characterize iron deposition and oxidation state in AD, we analyzed human hippocampal autopsy samples from four subjects with advanced AD that have been previously characterized with correlative MRI-histology. Methods: We perform scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) in the higher resolution transmission electron microscope on the surface and cross-sections of specific iron-rich regions of interest. Results: Specific previously analyzed regions were visualized using SEM and confirmed to be iron-rich deposits using EDS. Subsequent analysis using focused ion beam cross-sectioning and SEM characterized the iron deposition throughout the 3-D volumes, confirming the presence of iron throughout the deposits, and in two out of four specimens demonstrating colocalization with zinc. Analysis of traditional histology slides showed the analyzed deposits overlapped both with amyloid and tau deposition. Following higher resolution analysis of a single iron deposit using scanning transmission electron microscope (STEM), we demonstrated the potential of monochromated STEM-EELS to discern the relative oxidation state of iron within a deposit. Conclusion: These findings suggest that iron is present in the AD hippocampus and can be visualized and characterized using combined MRI and EM techniques. An altered relative oxidation state may suggest a direct link between iron and oxidative stress in AD. These methods thus could potentially measure an altered relative oxidation state that could suggest a direct link between iron and oxidative stress in AD. Furthermore, we have demonstrated the ability to analyze metal deposition alongside commonly used histological markers of AD pathology, paving the way for future insights into the molecular interactions between Aβ, tau, iron, and other putative metals, such as zinc.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1118
Author(s):  
Jan Homolak ◽  
Ana Babic Perhoc ◽  
Ana Knezovic ◽  
Jelena Osmanovic Barilar ◽  
Melita Salkovic-Petrisic

The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer’s disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.


Sign in / Sign up

Export Citation Format

Share Document