scholarly journals Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases

2021 ◽  
Vol 22 (13) ◽  
pp. 6715
Author(s):  
Shuangyu Lv ◽  
Huiyang Liu ◽  
Honggang Wang

Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes-related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.

2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
A. Tarun ◽  
C. Psarros ◽  
F. Sanna ◽  
L. Herdman ◽  
I. Akoumianakis ◽  
...  

2019 ◽  
Vol 20 (9) ◽  
pp. 2286 ◽  
Author(s):  
Manu Kumar ◽  
Dung Thi Le ◽  
Seongbin Hwang ◽  
Pil Joon Seo ◽  
Hyun Uk Kim

The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Sonia Nasi ◽  
Driss Ehirchiou ◽  
Athanasia Chatzianastasiou ◽  
Noriyuki Nagahara ◽  
Andreas Papapetropoulos ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sangsu Bang ◽  
Christopher R. Donnelly ◽  
Xin Luo ◽  
Maria Toro-Moreno ◽  
Xueshu Tao ◽  
...  

AbstractGPR37 was discovered more than two decades ago, but its biological functions remain poorly understood. Here we report a protective role of GPR37 in multiple models of infection and sepsis. Mice lacking Gpr37 exhibited increased death and/or hypothermia following challenge by lipopolysaccharide (LPS), Listeria bacteria, and the mouse malaria parasite Plasmodium berghei. Sepsis induced by LPS and Listeria in wild-type mice is protected by artesunate (ARU) and neuroprotectin D1 (NPD1), but the protective actions of these agents are lost in Gpr37−/− mice. Notably, we found that ARU binds to GPR37 in macrophages and promotes phagocytosis and clearance of pathogens. Moreover, ablation of macrophages potentiated infection, sepsis, and their sequelae, whereas adoptive transfer of NPD1- or ARU-primed macrophages reduced infection, sepsis, and pain-like behaviors. Our findings reveal physiological actions of ARU in host cells by activating macrophages and suggest that GPR37 agonists may help to treat sepsis, bacterial infections, and malaria.


2019 ◽  
Vol 20 (10) ◽  
pp. 2519 ◽  
Author(s):  
Sheetal Parida ◽  
Sumit Siddharth ◽  
Dipali Sharma

Adiponectin is one of the most important adipocytokines secreted by adipocytes and is called a “guardian angel adipocytokine” owing to its unique biological functions. Adiponectin inversely correlates with body fat mass and visceral adiposity. Identified independently by four different research groups, adiponectin has multiple names; Acrp30, apM1, GBP28, and AdipoQ. Adiponectin mediates its biological functions via three known receptors, AdipoR1, AdipoR2, and T-cadherin, which are distributed throughout the body. Biological functions of adiponectin are multifold ranging from anti-diabetic, anti-atherogenic, anti-inflammatory to anti-cancer. Lower adiponectin levels have been associated with metabolic syndrome, type 2 diabetes, insulin resistance, cardiovascular diseases, and hypertension. A plethora of experimental evidence supports the role of obesity and increased adiposity in multiple cancers including breast, liver, pancreatic, prostrate, ovarian, and colorectal cancers. Obesity mediates its effect on cancer progression via dysregulation of adipocytokines including increased production of oncogenic adipokine leptin along with decreased production of adiponectin. Multiple studies have shown the protective role of adiponectin in obesity-associated diseases and cancer. Adiponectin modulates multiple signaling pathways to exert its physiological and protective functions. Many studies over the years have shown the beneficial effect of adiponectin in cancer regression and put forth various innovative ways to increase adiponectin levels.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Syed Suhail Andrabi ◽  
Suhel Parvez ◽  
Heena Tabassum

Stroke is one of the most devastating neurological disabilities and brain’s vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca2+level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26728 ◽  
Author(s):  
Xu Li ◽  
Xiao-Bo Mao ◽  
Ren-Yi Hei ◽  
Zhi-Bin Zhang ◽  
Li-Ting Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document