scholarly journals Fluorometric Quantification of Human Platelet Polyphosphate Using 4′,6-Diamidine-2-phenylindole Dihydrochloride: Applications in the Japanese Population

2021 ◽  
Vol 22 (14) ◽  
pp. 7257
Author(s):  
Taisuke Watanabe ◽  
Yutaka Kitamura ◽  
Hachidai Aizawa ◽  
Hideo Masuki ◽  
Tetsuhiro Tsujino ◽  
...  

Polyphosphate (polyP), a biopolymer of inorganic phosphate, is widely distributed in living organisms. In platelets, polyP is released upon activation and plays important roles in coagulation and tissue regeneration. However, the lack of a specific quantification method has delayed the in-depth study of polyP. The fluorescent dye 4′,6-diamidine-2-phenylindole dihydrochloride (DAPI) has recently received attention as a promising probe for the visualization and quantification of cellular polyP levels. In this study, we further optimized quantification conditions and applied this protocol in quantification of platelet polyP levels in a Japanese population. Blood samples were collected from non-smoking, healthy Japanese subjects (23 males, 23 females). Washed platelets were fixed and probed with DAPI for fluorometric determination. PolyP levels per platelet count were significantly higher in women than that in men. A moderate negative correlation between age and polyP levels was found in women. Responsiveness to CaCl2 stimulation was also significantly higher in women than that in men. Overall, our optimized protocol requires neither purification nor degradation steps, reducing both the time and bias for reproducible quantification. Thus, we suggest that despite its low specificity, this DAPI-based protocol would be useful in routine laboratory testing to quantify platelet polyP levels efficiently and economically.

2020 ◽  
Author(s):  
Skander Abboud ◽  
Vincent AUCAGNE

An in-depth study of the Fmoc-based solid phase peptide synthesis of N-Hnb-Cys crypto-thioester peptides, advantageous building blocks for the native chemical ligation-based synthesis of proteins, led to the identification of epimerized and imidazolidinone side products formed during a key reductive amination step. The understanding of the underlying reaction mechanisms was crucial for the developement of an automatable optimized synthetic protocol.


2021 ◽  
Vol 22 (12) ◽  
pp. 6451
Author(s):  
Ching-Cheng Tsai ◽  
Tai-Horng Young ◽  
Guang-Shih Chen ◽  
Nai-Chen Cheng

The clinical application of human platelet lysate (HPL) holds promise for tissue regeneration, and the development of an efficient vehicle for its delivery is desired. Chitosan-based hydrogels are potential candidates, but they often exhibit weak mechanical properties. In this study, a chitosan/gelatin (CS-GE) hydrogel crosslinked by glyoxal was fabricated for sustained release of HPL. The influence of HPL on Hs68 fibroblast and human umbilical vein endothelial cell (HUVEC) culture was evaluated, and we found that supplementing 5% HPL in the medium could significantly improve cell proliferation relative to supplementing 10% fetal bovine serum (FBS). Moreover, HPL accelerated the in vitro wound closure of Hs68 cells and facilitated the tube formation of HUVECs. Subsequently, we fabricated CS-GE hydrogels crosslinked with different concentrations of glyoxal, and the release pattern of FITC-dextrans (4, 40 and 500 kDa) from the hydrogels was assessed. After an ideal glyoxal concentration was determined, we further characterized the crosslinked CS-GE hydrogels encapsulated with different amounts of HPL. The HPL-incorporated hydrogel was shown to significantly promote the proliferation of Hs68 cells and the migration of HUVECs. Moreover, the release pattern of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) from hydrogel was examined in vitro, demonstrating a sustained release profile of the growth factors. Finally, the chick chorioallantoic membrane assay revealed that HPL encapsulation in the hydrogel significantly stimulated angiogenesis in ovo. These results demonstrate the great potential of the crosslinked CS-GE hydrogel to serve as an effective delivery system for HPL to promote tissue regeneration.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4121 ◽  
Author(s):  
Natalia A. Luchnikova ◽  
Kseniya M. Ivanova ◽  
Ekaterina V. Tarasova ◽  
Victoria V. Grishko ◽  
Irina B. Ivshina

Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion.


Drug Research ◽  
2018 ◽  
Vol 69 (03) ◽  
pp. 125-129
Author(s):  
Bianca Handan ◽  
Caroline Cardoso ◽  
Luciana Pisani ◽  
Debora Estadella ◽  
Rosângela Chriguer ◽  
...  

AbstractGrapes are fruits that grow in clusters and can be crimson, black, dark blue, yellow, green, orange, and pink. Cadmium is a non-essential metal toxic to living organisms and the environment. Recently, health professionals, food scientists, and consumers have paid much attention to grapes for their health-promoting effects. To the best of our knowledge, there are no reviews describing the ability of grapes to mitigate the toxic effects induced by cadmium exposure in different tissues and/or organs. Herein, the aim of this review is to present the effects of grapes following cadmium exposure on the number of papers published in the scientific literature. The results showed that grapes are able to mitigate the harmful activities induced by exposure to cadmium in several tissues and organs. The main actions are closely related to tissue regeneration as a result of the reestablishment of morphology and antioxidant activity. However, further studies are welcomed in order to elucidate new biological pathways regarding the outcomes promoted by grapes in this context, specially related to inflammation, tissue regeneration and cellular death.


2021 ◽  
Vol 22 (15) ◽  
pp. 7768
Author(s):  
Marco Antonio Lacerda-Abreu ◽  
José Roberto Meyer-Fernandes

Inorganic phosphate (Pi) is an essential nutrient for living organisms and is maintained in equilibrium in the range of 0.8–1.4 mM Pi. Pi is a source of organic constituents for DNA, RNA, and phospholipids and is essential for ATP formation mainly through energy metabolism or cellular signalling modulators. In mitochondria isolated from the brain, liver, and heart, Pi has been shown to induce mitochondrial reactive oxygen species (ROS) release. Therefore, the purpose of this review article was to gather relevant experimental records of the production of Pi-induced reactive species, mainly ROS, to examine their essential roles in physiological processes, such as the development of bone and cartilage and the development of diseases, such as cardiovascular disease, diabetes, muscle atrophy, and male reproductive system impairment. Interestingly, in the presence of different antioxidants or inhibitors of cytoplasmic and mitochondrial Pi transporters, Pi-induced ROS production can be reversed and may be a possible pharmacological target.


2020 ◽  
Author(s):  
Skander Abboud ◽  
Vincent AUCAGNE

An in-depth study of the Fmoc-based solid phase peptide synthesis of N-Hnb-Cys crypto-thioester peptides, advantageous building blocks for the native chemical ligation-based synthesis of proteins, led to the identification of epimerized and imidazolidinone side products formed during a key reductive amination step. The understanding of the underlying reaction mechanisms was crucial for the developement of an automatable optimized synthetic protocol.


2020 ◽  
Author(s):  
Skander Abboud ◽  
Vincent AUCAGNE

An in-depth study of the Fmoc-based solid phase peptide synthesis of N-Hnb-Cys crypto-thioester peptides, advantageous building blocks for the native chemical ligation-based synthesis of proteins, led to the identification of epimerized and imidazolidinone side products formed during a key reductive amination step. The understanding of the underlying reaction mechanisms was crucial for the developement of an automatable optimized synthetic protocol.


2020 ◽  
Author(s):  
Skander Abboud ◽  
Vincent AUCAGNE

An in-depth study of the Fmoc-based solid phase peptide synthesis of N-Hnb-Cys crypto-thioester peptides, advantageous building blocks for the native chemical ligation-based synthesis of proteins, led to the identification of epimerized and imidazolidinone side products formed during a key reductive amination step. The understanding of the underlying reaction mechanisms was crucial for the developement of an automatable optimized synthetic protocol.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Author(s):  
F. B. P. Wooding ◽  
K. Pedley ◽  
N. Freinkel ◽  
R. M. C. Dawson

Freinkel et al (1974) demonstrated that isolated perifused rat pancreatic islets reproduceably release up to 50% of their total inorganic phosphate when the concentration of glucose in the perifusion medium is raised.Using a slight modification of the Libanati and Tandler (1969) method for localising inorganic phosphate by fixation-precipitation with glutaraldehyde-lead acetate we can demonstrate there is a significant deposition of lead phosphate (identified by energy dispersive electron microscope microanalysis) at or on the plasmalemma of the B cell of the islets (Fig 1, 3). Islets after incubation in high glucose show very little precipitate at this or any other site (Fig 2). At higher magnification the precipitate seems to be intracellular (Fig 4) but since any use of osmium or uranyl acetate to increase membrane contrast removes the precipitate of lead phosphate it has not been possible to verify this as yet.


Sign in / Sign up

Export Citation Format

Share Document