scholarly journals Bacillus pumilus 15.1, a Strain Active against Ceratitis capitata, Contains a Novel Phage and a Phage-Related Particle with Bacteriocin Activity

2021 ◽  
Vol 22 (15) ◽  
pp. 8164
Author(s):  
Alberto Fernández-Fernández ◽  
Antonio Osuna ◽  
Susana Vilchez

A 98.1 Kb genomic region from B. pumilus 15.1, a strain isolated as an entomopathogen toward C. capitata, the Mediterranean fruit fly, has been characterised in search of potential virulence factors. The 98.1 Kb region shows a high number of phage-related protein-coding ORFs. Two regions with different phylogenetic origins, one with 28.7 Kb in size, highly conserved in Bacillus strains, and one with 60.2 Kb in size, scarcely found in Bacillus genomes are differentiated. The content of each region is thoroughly characterised using comparative studies. This study demonstrates that these two regions are responsible for the production, after mitomycin induction, of a phage-like particle that packages DNA from the host bacterium and a novel phage for B. pumilus, respectively. Both the phage-like particles and the novel phage are observed and characterised by TEM, and some of their structural proteins are identified by protein fingerprinting. In addition, it is found that the phage-like particle shows bacteriocin activity toward other B. pumilus strains. The effect of the phage-like particles and the phage in the toxicity of the strain toward C. capitata is also evaluated.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Diana C. García-Ramón ◽  
Leopoldo Palma ◽  
Colin Berry ◽  
Antonio Osuna ◽  
Susana Vílchez

We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly.



2009 ◽  
Vol 76 (5) ◽  
pp. 1320-1327 ◽  
Author(s):  
C. Alfonso Molina ◽  
Juan F. Ca�a-Roca ◽  
Antonio Osuna ◽  
Susana Vilchez

ABSTRACT Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the Mediterranean fruit fly (medfly), is one of the most important fruit pests worldwide. The medfly is a polyphagous species that causes losses in many crops, which leads to huge economic losses. Entomopathogenic bacteria belonging to the genus Bacillus have been proven to be safe, environmentally friendly, and cost-effective tools to control pest populations. As no control method for C. capitata based on these bacteria has been developed, isolation of novel strains is needed. Here, we report the isolation of 115 bacterial strains and the results of toxicity screening with adults and larvae of C. capitata. As a result of this analysis, we obtained a novel Bacillus pumilus strain, strain 15.1, that is highly toxic to C. capitata larvae. The toxicity of this strain for C. capitata was related to the sporulation process and was observed only when cultures were incubated at low temperatures before they were used in a bioassay. The mortality rate for C. capitata larvae ranged from 68 to 94% depending on the conditions under which the culture was kept before the bioassay. Toxicity was proven to be a special characteristic of the newly isolated strain, since other B. pumilus strains did not have a toxic effect on C. capitata larvae. The results of the present study suggest that B. pumilus 15.1 could be considered a strong candidate for developing strategies for biological control of C. capitata.



Author(s):  
Maguintontz Cedney Jean-Baptiste ◽  
Andressa Lima de Brida ◽  
Daniel Bernardi ◽  
Sérgio da Costa Dias ◽  
Juliano de Bastos Pazini ◽  
...  

Abstract The Mediterranean fruit fly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is among the main pests of fruit crops worldwide. Biological control using entomopathogenic nematodes (EPNs) may be an alternative to suppress populations of this pest. Thus, the aim of this study was to evaluate the pathogenicity and virulence of six EPN isolates (Heterorhabditis bacteriophora HB, H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47, and S. brazilense IBCB-n06) against C. capitata pupae. The compatibility of EPNs with different chemical insecticides that are registered for management of C. capitata was also assessed. Isolates of H. bacteriophora HB and S. brazilense IBCB-n06 at a concentration of 1,000 infective juveniles (IJ)/ml proved to be most pathogenic to C. capitata (70 and 80% mortality, respectively). In contrast, the isolates H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47 provided pupal mortality of less than 60%. Bioassays to determine lethal concentrations indicated that concentrations of 600 IJ/ml (H. bacteriophora HB) and 1,000 IJ/ml (S. brazilense IBCB-n06) showed the highest virulence against C. capitata pupae. In contrast, the highest numbers of IJs emerged at concentrations of 1,200 and 200 IJ/ml. In compatibility bioassays, malathion, spinetoram, phosmet, acetamiprid, and novaluron were considered compatible with and harmless (Class 1) to H. bacteriophora HB and S. brazilense IBCB-n06, according to IOBC/WPRS. This information is important for implementing integrated management programs for C. capitata, using biological control with EPNs, whether alone or in combination with chemical insecticides.



Author(s):  
Rubén Sancho ◽  
Ana Guillem-Amat ◽  
Elena López-Errasquín ◽  
Lucas Sánchez ◽  
Félix Ortego ◽  
...  

AbstractThe sterile insect technique (SIT) is widely used in integrated pest management programs for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata. The genetic interactions between the released individuals from the genetic sexing strains (GSS), used for SIT applications worldwide, and wild individuals have not been studied. Under the hypothesis that a number of Vienna GSS individuals released to the field might not be completely sterile and may produce viable offspring, we have analyzed medfly Spanish field populations to evaluate the presence of Vienna strain genetic markers. To this goal, we have used contrasted nuclear and mitochondrial genetic markers, and two novel sets of nuclear polymorphisms with the potential to be markers to discriminate between Vienna and wild individuals. Nuclear Vienna markers located on the 5th chromosome of Vienna males have been found in 2.2% (19 from 875) of the Spanish wild medfly females captured at the area where SIT is applied. In addition, a female-inherited mitochondrial Vienna marker has been found in two from the 19 females showing nuclear Vienna markers. The detection of several of these markers in single individuals represents evidence of the introgression of Vienna strain into natural populations. However, alternative explanations as their presence at low frequency in wild populations in the studied areas cannot be fully discarded. The undesired release of non-fully sterile irradiated GSS individuals into the field and their interactions with wild flies, and the potential environmental implications should be taken into account in the application of the SIT.



Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 351-360 ◽  
Author(s):  
Neil Davies ◽  
Francis X Villablanca ◽  
George K Roderick

Abstract The Mediterranean fruit fly, Ceratitis capitata, is a devastating agricultural pest that threatens to become established in vulnerable areas such as California and Florida. Considerable controversy surrounds the status of Californian medfly infestations: Do they represent repeated introductions or the persistence of a resident population? Attempts to resolve this question using traditional population genetic markers and statistical methods are problematic because the most likely source populations in Latin America were themselves only recently colonized and are genetically very similar. Here, significant population structure among several New World medfly populations is demonstrated through the analysis of DNA sequence variation at four intron loci. Surprisingly, in these newly founded populations, estimates of population structure increase when measures of subdivision take into account the relatedness of alleles as well as their frequency. A nonequilibrium, likelihood-based statistical test that utilizes multilocus genotypes suggests that the sole medfly captured in California during 1996 was introduced from Latin America and was less likely to be a remnant of an ancestral Californian population. Many bioinvasions are hierarchical in nature, consisting of several sequential or overlapping invasion events, the totality of which can be termed a metainvasion. Phylogenetic data from multilocus DNA sequences will be vital to understanding the evolutionary and ecological processes that underlie metainvasions and to resolving their constituent levels.





1996 ◽  
Vol 26 (6) ◽  
pp. 585-592 ◽  
Author(s):  
P. Wappner ◽  
K.J. Kramer ◽  
F. Manso ◽  
T.L. Hopkins ◽  
L.A. Quesada-Allué


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199019 ◽  
Author(s):  
Iris Stappen ◽  
Juergen Wanner ◽  
Nurhayat Tabanca ◽  
Ulrich R. Bernier ◽  
Paul E. Kendra

Blue tansy essential oil (BTEO) ( Tanacetum annuum L.) was analyzed by GC-MS and GC-FID using two different capillary column stationary phases. Sabinene (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), and chamazulene (6.9%) were the main components using an SE52 column (non-polar). On a polar CW20M phase column, sabinene (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%) were the most abundant compounds. To assess the oil for potential applications in integrated pest management strategies, behavioral bioassays were conducted to test for repellency against yellow fever mosquito Aedes aegypti, and for attractant activity for Mediterranean fruit fly Ceratitis capitata. Results showed that BTEO was not effective in repelling Ae. aegypti (minimum effective dosage [MED]: 0.625 ± 0.109 mg/cm2 compared with the standard insect repellent DEET (N,N-diethyl-3-methylbenzamide). In assays with male C. capitata, BTEO displayed mild attraction compared with two positive controls (essential oils from tea tree Melaleuca alternifolia and African ginger bush Tetradenia riparia). Additional studies are needed to identify the specific attractant chemicals in BTEO and to determine if they confer a synergistic effect when combined with other known attractants for C. capitata. To the best of our knowledge, this study represents the first investigation of BTEO for repellency against the mosquito vector Ae. aegypti and for attractancy to C. capitata, a major agricultural pest worldwide.



2016 ◽  
Vol 120 ◽  
pp. 16-22 ◽  
Author(s):  
Rossana Castro ◽  
Elazar Fallik ◽  
Esther Nemny-Lavy ◽  
Sharon Alkalai-Tuvia ◽  
Polychronis Rempoulakis ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document