scholarly journals Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators

2021 ◽  
Vol 22 (16) ◽  
pp. 8375
Author(s):  
Béatrice Benoit ◽  
Anita Baillet ◽  
Christian Poüs

This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.

2004 ◽  
Vol 15 (5) ◽  
pp. 2287-2301 ◽  
Author(s):  
Srinivas Venkatram ◽  
Joseph J. Tasto ◽  
Anna Feoktistova ◽  
Jennifer L. Jennings ◽  
Andrew J. Link ◽  
...  

The γ-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe γ-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to γ-tubulin–associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1+ or gfh1+ are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Δ and gfh1Δ cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of γ-tubulin complex components in organizing different types of microtubule structures in S. pombe.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Suzan Schwertheim ◽  
Julia Kälsch ◽  
Holger Jastrow ◽  
Christoph Matthias Schaefer ◽  
Sarah Theurer ◽  
...  

Abstract Nuclear inclusions (NI) are a common finding in hepatocytes from patients with liver disease especially in diabetes mellitus and non-alcoholic fatty liver disease (NAFLD) but studies examining the shape and content of these inclusions in detail are lacking. In this study we define two distinct types of NI in NAFLD: inclusions bounded by the nuclear membrane, containing degenerative cell organelles and heterolysosomes (type1) and inclusions with deposits of glycogen but without any kind of organelles and delimiting membrane (type2). NI in 77 paraffin-embedded patients of NAFLD including NAFL and non-alcoholic steatohepatitis (NASH) were analyzed. In 4–12% of type1 NI immunopositivity for the autophagy-associated proteins LC3B, ubiquitin, p62/sequestosome1, cathepsin D and cathepsin B were detected with co-localizations of ubiquitin and p62; type2 NI showed no immunoreactivity. Three-dimensional reconstructions of isolated nuclei revealed that NI type1 are completely enclosed within the nucleus, suggesting that NI, although probably derived from cytoplasmic invaginations, are not just simple invaginations. Our study demonstrates two morphologically different types of inclusions in NAFLD, whereby both gained significantly in number in advanced stages. We suggest that the presence of autophagy-associated proteins and degenerated organelles within type1 NI plays a role in disease progression.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Bruna B. Przybulinski ◽  
Rodrigo G. Garcia ◽  
Maria Fernanda de C. Burbarelli ◽  
Claudia M. Komiyama ◽  
Deivid Kelly Barbosa ◽  
...  
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 437-446 ◽  
Author(s):  
Lisa Girard ◽  
Michael Freeling

Abstract Insertions of Mutator transposons into maize genes can generate suppressible alleles. Mu suppression is when, in the absence of Mu activity, the phenotype of a mutant allele reverts to that of its progenitor. Here we present the characterization of five dominant Mu-suppressible alleles of the knox (knotted1-like homeobox) genes liguleless3 and rough sheath1, which exhibit neomorphic phenotypes in the leaves. RNA blot analysis suggests that Mu suppression affects only the neomorphic aspect of the allele, not the wild-type aspect. Additionally, Mu suppression appears to be exerting its effects at the level of transcription or transcript accumulation. We show that truncated transcripts are produced by three alleles, implying a mechanism for Mu suppression of 5′ untranslated region insertion alleles distinct from that which has been described previously. Additionally, it is found that Mu suppression can be caused by at least three different types of Mutator elements. Evidence presented here suggests that whether an allele is suppressible or not may depend upon the site of insertion. We cite previous work on the knox gene kn1, and discuss our results in the context of interactions between Mu-encoded products and the inherently negative regulation of neomorphic liguleless3 and rough sheath1 transcription.


2021 ◽  
Author(s):  
Zenita Adhireksan ◽  
Deepti Sharma ◽  
Phoi Leng Lee ◽  
Qiuye Bao ◽  
Sivaraman Padavattan ◽  
...  

Abstract Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.


Sign in / Sign up

Export Citation Format

Share Document