scholarly journals Tissue-Specific Proteome and Subcellular Microscopic Analyses Reveal the Effect of High Salt Concentration on Actin Cytoskeleton and Vacuolization in Aleurone Cells during Early Germination of Barley

2021 ◽  
Vol 22 (17) ◽  
pp. 9642
Author(s):  
Georgi Dermendjiev ◽  
Madeleine Schnurer ◽  
Jakob Weiszmann ◽  
Sarah Wilfinger ◽  
Emanuel Ott ◽  
...  

Cereal grain germination provides the basis for crop production and requires a tissue-specific interplay between the embryo and endosperm during heterotrophic germination involving signalling, protein secretion, and nutrient uptake until autotrophic growth is possible. High salt concentrations in soil are one of the most severe constraints limiting the germination of crop plants, affecting the metabolism and redox status within the tissues of germinating seed. However, little is known about the effect of salt on seed storage protein mobilization, the endomembrane system, and protein trafficking within and between these tissues. Here, we used mass spectrometry analyses to investigate the protein dynamics of the embryo and endosperm of barley (Hordeum vulgare, L.) at five different early points during germination (0, 12, 24, 48, and 72 h after imbibition) in germinated grains subjected to salt stress. The expression of proteins in the embryo as well as in the endosperm was temporally regulated. Seed storage proteins (SSPs), peptidases, and starch-digesting enzymes were affected by salt. Additionally, microscopic analyses revealed an altered assembly of actin bundles and morphology of protein storage vacuoles (PSVs) in the aleurone layer. Our results suggest that besides the salt-induced protein expression, intracellular trafficking and actin cytoskeleton assembly are responsible for germination delay under salt stress conditions.

Author(s):  
Ananya Panda ◽  
Swapan K. Tripathy

Total seed storage protein profiles of 74 mungbean land races, three wild accessions and a popular variety ‘Jyoti’ of Odisha were analysed by Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 32 genotypes could be clearly identified based on genotype-specific seed protein fingerprints while rest of the test genotypes were categorized into eight protein types. Genotypes included in each protein type had 100% homology and some of these could be duplicates. In this pursuit, a few specific polypeptide markers have been detected for identification of the land races/ genotypes. Dendrogram based on electrophoretic data clustered the genotypes into seven groups at 70% phenon level. Paralakhemundi local, Samarjhola local and Phulbani local-D; and three wild accessions (TCR 20, TCR 213 and TCR 243) were comparatively divergent from other genotypes. Besides, Jyoti, Kalahandi local 2A, Sikri local, kodala local A and TCR 20 were identified to be protein rich with high seed yield. TCR 20 being morphologically similar to mungbean, moderately high protein content and high yielding as well as resistant to drought and bruchids; it may serve as a valuable source genotype in recombination breeding


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Neha Gupta ◽  
Nidhi Shrivastava ◽  
Pramod Kumar Singh ◽  
Sameer S. Bhagyawant

In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8.


2010 ◽  
Vol 45 (7) ◽  
pp. 721-729 ◽  
Author(s):  
Ksenija Taski-Ajdukovic ◽  
Vuk Djordjevic ◽  
Milos Vidic ◽  
Milka Vujakovic

The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 72
Author(s):  
Stefan Bieker ◽  
Lena Riester ◽  
Jasmin Doll ◽  
Jürgen Franzaring ◽  
Andreas Fangmeier ◽  
...  

In general, yield and fruit quality strongly rely on efficient nutrient remobilization during plant development and senescence. Transcriptome changes associated with senescence in spring oilseed rape grown under optimal nitrogen supply or mild nitrogen deficiency revealed differences in senescence and nutrient mobilization in old lower canopy leaves and younger higher canopy leaves [1]. Having a closer look at this transcriptome analyses, we identified the major classes of seed storage proteins (SSP) to be expressed in vegetative tissue, namely leaf and stem tissue. Expression of SSPs was not only dependent on the nitrogen supply but transcripts appeared to correlate with intracellular H2O2 contents, which functions as well-known signaling molecule in developmental senescence. The abundance of SSPs in leaf material transiently progressed from the oldest leaves to the youngest. Moreover, stems also exhibited short-term production of SSPs, which hints at an interim storage function. In order to decipher whether hydrogen peroxide also functions as a signaling molecule in nitrogen deficiency-induced senescence, we analyzed hydrogen peroxide contents after complete nitrogen depletion in oilseed rape and Arabidopsis plants. In both cases, hydrogen peroxide contents were lower in nitrogen deficient plants, indicating that at least parts of the developmental senescence program appear to be suppressed under nitrogen deficiency.


Author(s):  
Nisha . ◽  
Priyanka Khati ◽  
P B Rao

A qualitative as well as quantitative categorization of seed storage proteins profiles of 23 genotypes of Trigonella foenum- graecum L. were performed by using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) for exploring the level of genetic discrepancy at seed storage protein level. Total soluble proteins were resolved on 10% resolving gel. A dendrogram was constructed on the basis of weight of seed storage proteins, which divide total genotypes into two groups further classified into different sub groups containing different genotypes in them. The bands obtained from gel electrophoresis can serve as a potent tool in discrimination of different genotypes on the basis of their protein content. Proteins with molecular weight 66, 43 and 35 kDa were found in all the genotypes except Fgk-76, PR, Rmt-303, PEB and Rmt-361, The 43 kDa protein band was found missing in Fgk-67, AFg-2, AM-2, AFg-4, Fgk-73, although the protein with 35 kDa weight was present in all the genotypes but not in Rmt-303 same as 63 kDa which is not present in Fgk-70 and 55 kDa protein band was found missing in Fgk-67, Afg-4 and Rmt-361.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Pramod Kumar Singh ◽  
Nidhi Shrivastava ◽  
Krishna Chaturvedi ◽  
Bechan Sharma ◽  
Sameer S. Bhagyawant

Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins withArabidopsis thaliana.


2018 ◽  
Vol 10 (1) ◽  
pp. 296-300 ◽  
Author(s):  
A. Sharma ◽  
S. Sharma

The relative availabilities of nitrogen and sulphur can modulate seed storage protein composition in grain legumes and cereals. Soybean contains two major seed storage proteins, glycinins and β-conglycinins that account for approximately 70% of total protein and their composition is affected by nitrogen and sulphur supplies. The present study demonstrated the effect of sulphur (Gypsum @ 20 kg S ha-1 ) and recommended a dose of nitrogen (Urea @ 31.25 kg N ha-1 ) alone or in combination on accumulation patterns of various protein fractions and protein quality in soybean seeds under agro-climatic conditions of Punjab. Application of nitrogen or sulphur alone decreased the relative proportion of β-subunit of purified β-conglycinin fraction than control. The acidic polypeptides of glycinin fraction of globulin and 11S/7S ratio were increased in all the treatments in comparison to control, and the maximum increase was reported in the combined application of gypsum with the recommended dose of urea. The lower proportion of total 7S, increased acidic polypeptides and improved 11S:7S ratio by combined treatment of nitrogen and sulphur suggests that gypsum @ 20 kg S ha-1 can be beneficial when applied along the recommended nitrogen dose to improve soybean protein quality.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-69
Author(s):  
Henok Ayelign ◽  
Eleni Shiferaw ◽  
Faris Hailu

AbstractThe genetic diversity of common bean accessions were assessed using seed storage protein markers. At regional level, accessions from the two major growing regions showed the highest level of gene diversity (H = 0.322, I = 0.485, and H = 0.312, I = 0.473), which can be exploited for the future improvement of the crop. Based on phaseolin, the major storage protein in common bean, the majority of the accessions (86%) were grouped under Mesoamerican gene pool. Seed proteins were also used to differentiate various Phaseolus species, indicating the usefulness of seed storage proteins in species identification in this genus.


Sign in / Sign up

Export Citation Format

Share Document