scholarly journals Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring

2021 ◽  
Vol 22 (18) ◽  
pp. 9714
Author(s):  
Paula Kamińska ◽  
Karolina Buszka ◽  
Maciej Zabel ◽  
Michał Nowicki ◽  
Catherine Alix-Panabières ◽  
...  

Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.

2020 ◽  
Vol 66 (4) ◽  
pp. 391-397
Author(s):  
T. Sokolova ◽  
T. Laidus ◽  
R. Meerovich ◽  
K. Zagorodnev ◽  
Aleksandr Martyanov ◽  
...  

«Liquid biopsy» is gradually becoming a mandatory procedure in cancer diagnostics. The aim of this procedure is to detect and monitor tumor-specific markers in various body fluids (blood, urine, pleural fluid, etc.). Significant efforts have been made to convert the most common mutational tests (EGFR, KRAS, BRAF) into non-invasive procedures. Despite some advantages, “liquid biopsy” is still not equivalent to traditional tissue analysis due to limited sensitivity and specificity; it cannot be routinely used in cancer medicine until the standardization of pre-analytical procedures is agreed. We intend to improve the performance of liquid biopsy for detection of a number of clinically relevant mutations (EGFR: ex19del and L858R; KRAS: 12, 13, 61, 146 codon nucleotide substitutions; BRAF: V600E). 417 plasma samples obtained from 88 patients (KRAS/NRAS/BRAF-mutated colorectal cancer (CRC): n= 57; EGFR-mutated lung adenocarcinomas (LC): n = 14; BRAF-mutated melanoma: n = 17) were analyzed by ddPCR for the presence of corresponding mutations in the circulating tumor DNA (ctDNA). Presence of tumor-specific mutations in plasma was confirmed in 32/57 (56%) CRC, 7/14 (50%) LC, and 4/17 (24%) melanoma cases. The proportion of mutation-positive plasma cases was tended to be higher in the group of patients with distant metastases compared to subjects with localized disease [34/56 (61%) vs. 5/15 (33%), р = 0.058]. 86 patients provided their blood at 9.00 (morning) and at 16.00 (afternoon). In addition, blood-takes were performed before and 15 minutes after usual breakfast as well as before and 15 minutes after moderate physical exercise. The detection rate of cancer-specific mutations in plasma was not significantly correlated with described above circumstances of blood-take. Meanwhile, the noticeable intrapatient variability of circulating mutation success rate has been detected. Thus, depending on clinical circumstances, at least negative ctDNA tests could be advised to be repeated in some patients, in order to ensure the reliability of results.


2019 ◽  
Vol 63 (6) ◽  
pp. 456-465 ◽  
Author(s):  
Joana Fernandes Marques ◽  
Joana Pereira Reis ◽  
Gabriela Fernandes ◽  
Venceslau Hespanhol ◽  
José Carlos Machado ◽  
...  

Liquid biopsy was introduced to the oncology field with the promise of revolutionizing the management of cancer patients, minimizing the exposure to invasive procedures such as tissue biopsy, and providing reliable information regarding therapy response and detection of disease relapse. Despite the significant increase in the number of published studies on circulating tumor DNA (ctDNA) in the past years, the emphasis of most studies is on the development of new technologies or on the clinical utility of ctDNA. This leaves a clear gap of knowledge concerning the biology of ctDNA, such as the fundamental mechanisms through which DNA from tumor cells is released into the circulation. Moreover, considering that ctDNA analysis is now currently being applied in clinical practice, the need for rigorous quality control is arising, and with it the necessity to standardize procedures, from sample collection to data analysis. This review focuses on the main aspects of ctDNA, including approaches currently available to evaluate tumor genetics, as well as the points that still require improvement in order to make liquid biopsy a key player in precision medicine.


2018 ◽  
Vol 56 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Lydia Giannopoulou ◽  
Sabine Kasimir-Bauer ◽  
Evi S. Lianidou

Abstract Ovarian cancer remains the most lethal disease among gynecological malignancies despite the plethora of research studies during the last decades. The majority of patients are diagnosed in an advanced stage and exhibit resistance to standard chemotherapy. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) represent the main liquid biopsy approaches that offer a minimally invasive sample collection. Both have shown a diagnostic, prognostic and predictive value in many types of solid malignancies and recent studies attempted to shed light on their role in ovarian cancer. This review is mainly focused on the clinical value of both CTCs and ctDNA in ovarian cancer and, more specifically, on their potential as diagnostic, prognostic and predictive tumor biomarkers.


Diagnostics ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 75 ◽  
Author(s):  
Aman Saini ◽  
Yash Pershad ◽  
Hassan Albadawi ◽  
Malia Kuo ◽  
Sadeer Alzubaidi ◽  
...  

Liquid biopsy is the sampling of any biological fluid in an effort to enrich and analyze a tumor’s genetic material. Peripheral blood remains the most studied liquid biopsy material, with circulating tumor cells (CTC’s) and circulating tumor DNA (ctDNA) allowing the examination and longitudinal monitoring of a tumors genetic landscape. With applications in cancer screening, prognostic stratification, therapy selection and disease surveillance, liquid biopsy represents an exciting new paradigm in the field of cancer diagnostics and offers a less invasive and more comprehensive alternative to conventional tissue biopsy. Here, we examine liquid biopsies in gastrointestinal cancers, specifically colorectal, gastric, and pancreatic cancers, with an emphasis on applications in diagnostics, prognostics and therapeutics.


Author(s):  
Annarita Perillo ◽  
Mohamed Vincenzo Agbaje Olufemi ◽  
Jacopo De Robbio ◽  
Rossella Margherita Mancuso ◽  
Anna Roscigno ◽  
...  

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.


2021 ◽  
Vol 156 (0) ◽  
pp. 1-7
Author(s):  
Atsushi Imai ◽  
Kiyoshi Misawa ◽  
Satoshi Yamada ◽  
Jun Okamura ◽  
Daiki Mochizuki ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3506-3506
Author(s):  
Andrea Sartore-Bianchi ◽  
Filippo Pietrantonio ◽  
Sara Lonardi ◽  
Benedetta Mussolin ◽  
Francesco Rua ◽  
...  

3506 Background: Despite advances in molecular segmentation of metastatic colorectal cancer (mCRC), beyond RAS status therapeutic actionability remains confined to the limited subgroups of ERBB2 amplified, BRAF mutated and MSI-H patients. Optimization of available treatments is therefore warranted. Rechallenge with anti-EGFR monoclonal antibodies is often empirically used with some benefit as late-line therapy. We previously found that mutant RAS and EGFR ectodomain clones, which emerge in blood during EGFR blockade, decline upon antibody withdrawal leading to regain drug sensitivity. Based on this rationale, we designed CHRONOS, a multicenter phase II trial of anti-EGFR therapy rechallenge guided by monitoring of the mutational status of RAS, BRAF and EGFR in circulating tumor DNA (ctDNA). To our knowledge, this is the first interventional clinical trial of liquid biopsy for driving anti-EGFR rechallenge therapy in mCRC. Methods: Eligible patients were PS ECOG 0-2 RAS/BRAF WT mCRC having first achieved an objective response and then progression in any treatment line with an anti-EGFR antibody containing regimen, displaying RAS, BRAF and EGFR ectodomain WT status in ctDNA at molecular screening after progression to the last anti-EGFR-free regimen. Clonal evolution in ctDNA was analyzed by ddPCR and next generation sequencing. Panitumumab 6 mg/kg was administered IV every two weeks until progression. The primary endpoint was objective response rate (ORR) by RECIST version 1.1 with independent central review. 27 total patients and 6 responses were required to declare the study positive (power = 85%, type I error = 0.05). Results: Between Aug 19, 2019 and Nov 6, 2020 52 patients were screened by liquid biopsy and 36 (69%) were negative in ctDNA for RAS/BRAF/EGFR mutations. Of these, 27 patients were enrolled in 4 centers. Median age was 64 years (range: 42-80). PS ECOG was 0/50%, 1/46%, 2/4%. Previous anti-EGFR was administered in 1st line in 63%, 2nd in 15% and > 2nd in 22%. Median number of previous treatments was 3. The primary endpoint was met, with 8/27 partial responses (PR) observed (2 unconfirmed) (ORR = 30%, 95% CI: 12-47%). Stable disease (SD) was obtained in 11/27 (40%, 95% CI: 24-59%), lasting > 4 months in 8/11. Disease control rate (PR plus SD > 4 months) was therefore obtained in 16/27 (59%, 95% CI: 41-78%). Median progression-free survival was 16 weeks. Median duration of response was 17 weeks (1 ongoing). Maximal grade toxicity was G3, limited to dermatological and occurring in 19% of patients. ctDNA dynamics were studied in all patients. Conclusions: Liquid biopsy-driven rechallenge with anti-EGFR antibodies leads to further objective responses in one third of patients. Genotyping tumor DNA in the blood to direct therapy can be effectively incorporated in the management of advanced CRCs. Clinical trial information: 2016-002597-12.


Sign in / Sign up

Export Citation Format

Share Document