scholarly journals Identification of Arvicola terrestris scherman Sperm Antigens for Immune Contraceptive Purposes

2021 ◽  
Vol 22 (18) ◽  
pp. 9965
Author(s):  
Areski Chorfa ◽  
Chantal Goubely ◽  
Joelle Henry-Berger ◽  
Rachel Guiton ◽  
Joël R. Drevet ◽  
...  

The cyclical proliferation of the wild fossorial rodent Arvicola terrestris scherman (ATS) is critical in mid-mountain ecosystems of several European countries. Our goal is to develop an immunocontraceptive vaccine to control their fertility, as a sustainable alternative to chemical poisons currently used. Indeed, these chemicals cause the death of ATS predators and animals sharing their ecosystem, and current laws progressively limit their use, making the development of a targeted vaccination strategy an interesting and efficient alternative. In order to identify species-specific sperm antigens, male and female ATS received subcutaneous injections of whole ATS spermatozoa to elicit an immune response. The analysis of the immune sera led to the identification of 120 immunogenic proteins of sperm cells. Of these, 15 were strictly sperm-specific and located in different regions of the male gamete. Some of these antigens are proteins involved in molecular events essential to the reproductive process, such as sperm–egg interaction, acrosomal reaction, or sperm motility. This approach not only identified a panel of immunogenic proteins from ATS sperm cells, but also demonstrated that some of these proteins trigger an immune response in both male and female ATS. These spermatic antigens are good candidates for the development of a contraceptive vaccine.

1994 ◽  
Vol 6 (3) ◽  
pp. 273 ◽  
Author(s):  
NJ Alexander ◽  
G Bialy

Recent advances in antigen definition and production have made the development of a contraceptive vaccine more attainable. Such a vaccine must evoke an immune response that blocks an indispensable step in the reproductive process. Vaccine research involves many approaches to fertility prevention. Vaccines are being developed that could interrupt fertility by inhibition of gonadotrophin release, the function of follicle-stimulating hormone or the effects of human chorionic gonadotrophin (hCG); alternatively, they may prevent fertilization by interfering with the transport of spermatozoa or with sperm-zona pellucida binding. The most advanced prototype is a vaccine based on antibodies to beta hCG. Such vaccines are being studied for clinical efficacy. Many hurdles remain in contraceptive vaccine development. Since the antigens are peptides or small proteins, the resultant immune response is usually moderate, and better adjuvants and delivery systems must be developed to enhance and maintain the immune response. Improvement of the mucosal immune response may be necessary for vaccines incorporating sperm antigens. Research on vaccines that control fertility has resulted in a fascinating base of scientific knowledge that, it is hoped, can be converted into products that will allow another option for individuals who wish to control their fertility.


2003 ◽  
Vol 15 (8) ◽  
pp. 429 ◽  
Author(s):  
D. J. Kay ◽  
A. L. Kitchener

In the present study, male and female tammar wallabies were immunised with whole tammar wallaby sperm in adjuvant. An assay for sperm antibodies using a live sperm ELISA has been developed to detect sperm surface antigens and used to validate an assay using a 3-[(3-cholamidopropyl) dimethylammonio]-1 propanesulfonate (CHAPS) membrane extract of whole tammar wallaby sperm. The tests were used to monitor the immune response to whole sperm in both male and female tammar wallabies. Antisera with a limited array of specificities were generated, with those locating to the midpiece region of the sperm appearing the most likely candidates for targets for fertility perturbation based on immunofluorescence of fixed and non-fixed sperm. These systemically generated antibodies were demonstrated to have access to both the female and male tammar reproductive tracts and were found on ejaculated sperm and antibodies from female sera and follicular fluid-labelled fresh ejaculated sperm from non-immunised males. Preliminary sequencing of these proteins has identified some possibilities for further investigation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ernesta Cavalcanti ◽  
Maria Antonietta Isgrò ◽  
Domenica Rea ◽  
Lucia Di Capua ◽  
Giusy Trillò ◽  
...  

Abstract Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS “Fondazione Pascale” Cancer Center (Naples, Italy): previously infected to SARS-CoV-2 subjects and not infected to SARS-CoV-2 subjects. Methods We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated. Results Both previously infected and not infected to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-infected subjects in comparison to titers of not infected subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously infected to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ($$ \overline{x} $$ x ¯ =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose. Conclusions The results showed that, as early as the first dose, SARS-CoV-2-infected individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-infected subjects. FC for previously infected subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not infected subjects, after the second dose, were = 3.8 in > 45.0% of vaccinees, and ≤ 3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.


1995 ◽  
Vol 7 (4) ◽  
pp. 825 ◽  
Author(s):  
LE Kerr

The development of novel forms of contraception is one way in which the world population crisis is being tackled. The concept of a contraceptive vaccine based on gamete-specific antigens is a particularly attractive approach. Much research has been carried out to identify sperm antigens which could be used as the immunogen. The most encouraging leads have come from groups using monoclonal antibodies to identify and characterize sperm antigens important for fertility (e.g. SP-10, PH-20 and PH-30). Identification of these molecules will also enable the development of specific tests for the diagnosis of immune infertility.


Vaccine ◽  
1997 ◽  
Vol 15 (15) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Davis ◽  
Bror Morein ◽  
Lennart Åkerblom ◽  
Karin Lövgren-Bengtsson ◽  
Mariëlle E. van Gils ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 1-8
Author(s):  
Eraldo L Zanella

The freezing/thawing process of spermatozoa can cause cellular damage to the male gamete, decreasing the fertilization potential due to the increase in the production of reactive oxygen species (ROS). Melatonin is a potent endogenous antioxidant that protects the body against the damage caused by ROS. This study has evaluated different melatonin concentrations on the sperm viability of cryopreserved semen of Crioulo stallions. For that, three ejaculates were collected from five stallions diluted in a commercial extender followed by centrifugation and resuspension in a commercial freezing extender supplemented with 0; 1.25; 2.5. 5mM of Melatonin before the cryopreservation process. After thawing, the evaluation was performed assessing motility and flow cytometry evaluations: the plasma membrane integrity (PI), the integrity of the acrosomal membrane (FITC-PNA), mitochondrial membrane potential (JC1), and ROS generation (DCF-DA). Our results showed that sperm motility in the group without Melatonin and the 1.25mM group did not show the difference; however, the groups 2.5mM and 5mM presented a reduction in sperm motility. The 1.25 mM concentration was able to protect the plasma membrane during the cryopreservation process, in addition to showing a significant reduction in the production of ROS and increasing the percentage of sperm with integral acrosome. It can also be seen that high concentrations of Melatonin did not show beneficial effects. In conclusion, the addition of 1.25 mM of the Melatonin in Crioulo sperm cells showed to have a protective effect on the sperm cell during cryopreservation.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 345
Author(s):  
Carla Morales-Ferré ◽  
Ignasi Azagra-Boronat ◽  
Malén Massot-Cladera ◽  
Àngels Franch ◽  
Margarida Castell ◽  
...  

Rotaviruses (RVs) are the leading pathogens causing severe and acute diarrhea in children and animals. It is well known that sex contributes to shaping immune responses, thus it could also influence the incidence and severity of the RV infection. The aim of this study was to analyze the influence of sexual dimorphism on RV infection and its antibody (Ab) immune response in a suckling rat model. Neonatal suckling rats were intragastrically RV-inoculated and clinical indexes derived from fecal samples, as well as immune variables were evaluated. Higher severity of diarrhea, fecal weight and viral elimination were observed in males compared to females (p < 0.05). Regarding the adaptative immunity, the RV shaped the immune response to lower IgG1 levels and an increased Th1/Th2-associated Ab response (p < 0.05). Although females had lower IgG2a levels than males (p < 0.05), the specific anti-RV antibody levels were not sex influenced. In fact, at this age the passive transfer of anti-RV antibodies through breast milk was the critical factor for clustering animals, independently of their sex. It can be concluded that male and female diarrhea severity in RV infection is slightly influenced by sexual dimorphism and is not associated with the specific immune response against the virus.


Sign in / Sign up

Export Citation Format

Share Document