Contraceptive vaccine development

1994 ◽  
Vol 6 (3) ◽  
pp. 273 ◽  
Author(s):  
NJ Alexander ◽  
G Bialy

Recent advances in antigen definition and production have made the development of a contraceptive vaccine more attainable. Such a vaccine must evoke an immune response that blocks an indispensable step in the reproductive process. Vaccine research involves many approaches to fertility prevention. Vaccines are being developed that could interrupt fertility by inhibition of gonadotrophin release, the function of follicle-stimulating hormone or the effects of human chorionic gonadotrophin (hCG); alternatively, they may prevent fertilization by interfering with the transport of spermatozoa or with sperm-zona pellucida binding. The most advanced prototype is a vaccine based on antibodies to beta hCG. Such vaccines are being studied for clinical efficacy. Many hurdles remain in contraceptive vaccine development. Since the antigens are peptides or small proteins, the resultant immune response is usually moderate, and better adjuvants and delivery systems must be developed to enhance and maintain the immune response. Improvement of the mucosal immune response may be necessary for vaccines incorporating sperm antigens. Research on vaccines that control fertility has resulted in a fascinating base of scientific knowledge that, it is hoped, can be converted into products that will allow another option for individuals who wish to control their fertility.

2021 ◽  
Vol 22 (18) ◽  
pp. 9965
Author(s):  
Areski Chorfa ◽  
Chantal Goubely ◽  
Joelle Henry-Berger ◽  
Rachel Guiton ◽  
Joël R. Drevet ◽  
...  

The cyclical proliferation of the wild fossorial rodent Arvicola terrestris scherman (ATS) is critical in mid-mountain ecosystems of several European countries. Our goal is to develop an immunocontraceptive vaccine to control their fertility, as a sustainable alternative to chemical poisons currently used. Indeed, these chemicals cause the death of ATS predators and animals sharing their ecosystem, and current laws progressively limit their use, making the development of a targeted vaccination strategy an interesting and efficient alternative. In order to identify species-specific sperm antigens, male and female ATS received subcutaneous injections of whole ATS spermatozoa to elicit an immune response. The analysis of the immune sera led to the identification of 120 immunogenic proteins of sperm cells. Of these, 15 were strictly sperm-specific and located in different regions of the male gamete. Some of these antigens are proteins involved in molecular events essential to the reproductive process, such as sperm–egg interaction, acrosomal reaction, or sperm motility. This approach not only identified a panel of immunogenic proteins from ATS sperm cells, but also demonstrated that some of these proteins trigger an immune response in both male and female ATS. These spermatic antigens are good candidates for the development of a contraceptive vaccine.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Mauricio M. Rodrigues ◽  
Ana Carolina Oliveira ◽  
Maria Bellio

In the past ten years, studies have shown the recognition ofTrypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses toT. cruziinfection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 948 ◽  
Author(s):  
Sung Kang ◽  
Seok Hong ◽  
Yong-Kyu Lee ◽  
Sungpil Cho

Most currently available commercial vaccines are delivered by systemic injection. However, needle-free oral vaccine delivery is currently of great interest for several reasons, including the ability to elicit mucosal immune responses, ease of administration, and the relatively improved safety. This review summarizes the biological basis, various physiological and immunological barriers, current delivery systems with delivery criteria, and suggestions for strategies to enhance the delivery of oral vaccines. In oral vaccine delivery, basic requirements are the protection of antigens from the GI environment, targeting of M cells and activation of the innate immune response. Approaches to address these requirements aim to provide new vaccines and delivery systems that mimic the pathogen’s properties, which are capable of eliciting a protective mucosal immune response and a systemic immune response and that make an impact on current oral vaccine development.


2020 ◽  
Vol 28 ◽  
Author(s):  
Alireza Milani ◽  
Kazem Baesi ◽  
Elnaz Agi ◽  
Ghazal Marouf ◽  
Maryam Ahmadi ◽  
...  

Background:: The combination antiretroviral therapy (cART) could increase the number of circulating naive CD4 T lymphocytes, but was not able to eradicate human immunodeficiency virus-1 (HIV-1) infection. Objective:: Thus, induction of strong immune responses is important for control of HIV-1 infection. Furthermore, a simple and perfect serological method is required to detect virus in untreated-, treated- and drug resistant- HIV-1 infected individuals. Methods:: This study was conducted to assess and compare immunogenic properties of Nef, Vif, Vpr and Vpu accessory proteins as an antigen candidate in mice and their diagnostic importance in human as a biomarker. Results:: Our data showed that in mice, all heterologous prime/ boost regimens were more potent than homologous prime/ boost regimens in eliciting Th1 response and Granzyme B secretion as CTL activity. Moreover, the Nef, Vpu and Vif proteins could significantly increase Th1 immune response. In contrast, the Vpr protein could considerably induce Th2 immune response. On the other hand, among four accessory proteins, HIV-1 Vpu could significantly detect treated group from untreated group as a possible biomarker in human. Conclusion:: Generally, among accessory proteins, Nef, Vpu and Vif antigens were potentially more suitable vaccine antigen candidates than Vpr antigen. Human antibodies against all these proteins were higher in HIV-1 different groups than healthy group. Among them, Vpu was known as a potent antigen in diagnosis of treated from untreated individuals. The potency of accessory proteins as an antigen candidate in an animal model and a human cohort study are underway.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 380
Author(s):  
Bonnie L Quigley ◽  
Peter Timms

Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas’ post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.


2021 ◽  
Vol 113 ◽  
pp. 185-195
Author(s):  
Tasok Leya ◽  
Irshad Ahmad ◽  
Rajendran Kooloth Valappil ◽  
Pani Prasad Kurcheti ◽  
Gayatri Tripathi ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 281
Author(s):  
Isaías Sanmartín ◽  
Luis Sendra ◽  
Inés Moret ◽  
María José Herrero ◽  
Salvador F. Aliño

Vector design and its characterization is an area of great interest in current vaccine research. In this article, we have formulated and characterized a multicompartmental lipopolyplex, which associates multiple liposomes and polyplexes in the same complex. These particles allow the simultaneous delivery of lipid or water-soluble antigens associated with genes to the same cell, in much higher amounts than conventional lipopolyplexes. The vector characterization and optimization were carried out using liposomes with entrapped carboxyfluorescein and adapted electrophoretic assays. Two types of lipopolyplexes (containing hydrophilic or lipophilic antigens) were employed to evaluate their interest in vaccination. The lipopolyplex loaded with an extract of water-soluble melanoma proteins proved to efficiently induce humoral response in murine melanoma model, increasing the levels of IgM and IgG. The specificity of the immune response induced by the lipopolyplex was demonstrated in mice with the lipopolyplex containing the GD3 ganglioside lipid antigen, abundant in melanoma cells. The levels of anti-GD3 IgG increased markedly without modifying the expression of humoral antibodies against other gangliosides.


2019 ◽  
Vol 222 (4) ◽  
pp. 572-582 ◽  
Author(s):  
Louis Fries ◽  
Iksung Cho ◽  
Verena Krähling ◽  
Sarah K Fehling ◽  
Thomas Strecker ◽  
...  

Abstract Background Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. Methods A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. Results All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. Conclusions Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.


Sign in / Sign up

Export Citation Format

Share Document