scholarly journals Distinct Mechanisms Account for In Vitro Activation and Sensitization of TRPV1 by the Porphyrin Hemin

2021 ◽  
Vol 22 (19) ◽  
pp. 10856
Author(s):  
Natalie E. Palmaers ◽  
Steffen B. Wiegand ◽  
Christine Herzog ◽  
Frank G. Echtermeyer ◽  
Mirjam J. Eberhardt ◽  
...  

TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.

2006 ◽  
Vol 128 (5) ◽  
pp. 509-522 ◽  
Author(s):  
Alexander T. Stein ◽  
Carmen A. Ufret-Vincenty ◽  
Li Hua ◽  
Luis F. Santana ◽  
Sharona E. Gordon

Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85β subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85β coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane.


2005 ◽  
Vol 25 (12) ◽  
pp. 1573-1585 ◽  
Author(s):  
Min-Liang Si ◽  
Chen Long ◽  
Ding-I Yang ◽  
Mei-Fang Chen ◽  
Tony Jer-Fu Lee

The exact mechanism underlying regional cerebral hypoperfusion in the early phase of Alzheimer's disease (AD) is not understood. We have shown in isolated porcine cerebral arteries that stimulation of sympathetic α7-nicotinic acetylcholine receptors (α7-nAChRs) causes release of nitric oxide in parasympathetic nitrergic nerves and vasodilation. We therefore examined if β-amyloid peptides (Aβs), which play a key role in pathogenesis of AD, blocked sympathetic α7-nAChRs leading to reduced neurogenic nitrergic dilation in isolated porcine basilar arteries, using in vitro tissue bath, calcium image, and patch clamping techniques. The results indicated that Aβ1–40, but not Aβ40–1, blocked relaxation of endothelium-denuded basilar arterial rings induced by nicotine (100μ;mol/L) and choline (1 mmol/L) without affecting that induced by sodium nitroprusside or isoproterenol. In cultured superior cervical ganglion (SCG) cells, Aβ1–40, but not Aβ40–1, blocked choline- and nicotine-induced calcium influx and inward currents. The Aβ blockade of the nitrergic vasodilation and inward currents, but not that of calcium influx, was prevented by acute pretreatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors mevastatin and lovastatin. These results suggest that Aβ1–40 blocks cerebral perivascular sympathetic α7-nAChRs, resulting in the attenuation of cerebral nitrergic neurogenic vasodilation. This effect of Aβ may be responsible in part for cerebral hypoperfusion occurred in the early phase of the AD, which may be prevented by statins most likely because of their effects independent of cholesterol lowering. Statins may offer an alternative strategy in the prevention and treatment of AD.


2022 ◽  
pp. ASN.2021030392
Author(s):  
Wouter van Megen ◽  
Megan Beggs ◽  
Sung-Wan An ◽  
Patrícia Ferreira ◽  
Justin Lee ◽  
...  

Background Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal calcium wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. Methods We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase-reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient potential receptor vanilloid 5 (TPRV5), as determined by patch-clamp in HEK293 cells. Results Gentamicin increased urinary Ca2+ excretion in wild-type mice following acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/-mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch-clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and that chronic gentamicin administration downregulated distal nephron Ca2+ transporters. Conclusions Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into calcium wasting in patients treated with gentamicin.


2012 ◽  
Vol 287 (42) ◽  
pp. 35065-35077 ◽  
Author(s):  
Sarah M. Wilson ◽  
Brian S. Schmutzler ◽  
Joel M. Brittain ◽  
Erik T. Dustrude ◽  
Matthew S. Ripsch ◽  
...  

N-type Ca2+ channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca2+ channel complex. Nat. Med. 17, 822–829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388–402), “L1”) and the distal C terminus (CaV1.2(2014–2028) “Ct-dis”) that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs from mice with a heterozygous mutation of Nf1 linked to neurofibromatosis type 1. Ct-dis peptide, administered intraperitoneally, exhibited antinociception in a zalcitabine (2′-3′-dideoxycytidine) model of AIDS therapy-induced and tibial nerve injury-related peripheral neuropathy. This study suggests that CaV peptides, by perturbing interactions with the neuromodulator CRMP2, contribute to suppression of neuronal hypersensitivity and nociception.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A12-A12
Author(s):  
Francesca Raffin ◽  
Michela Cristofolini ◽  
Gerardo Rosario Biella ◽  
Patrick Fuller ◽  
Elda Arrigoni

Abstract Introduction The suprachiasmatic nucleus (SCN) is responsible for generating the circadian rhythmicity in mammals. The ventral region or core of the SCN contains neurons that express the neuropeptide vasoactive intestinal polypeptide (VIP). VIP signaling is central for coherency and synchrony of SCN activity. VIP-expressing neurons in the SCN densely project to the ventral subregions of the subparaventricular zone (vSPZ). We studied the effects of VIP on vSPZ neurons in brain slices of mice with a combined calcium imaging and whole-cell patch-clamp recording techniques. We used calcium imaging to assess the effects of VIP on vSPZ neurons as a population and we acquired patch-clamp recordings to explore the effects of VIP on the electrical properties and the synaptic inputs to vSPZ neurons. Methods We expressed GCamp6 in vSPZ neurons by stereotaxically injecting AAV10-DIO-Ef1a-GCamp6 into the vSPZ of vGAT-IRES-Cre mice. Brain slices were prepared two weeks later and images were captured using a standard GFP filter set. We performed whole-cell recordings of the vSPZ neurons of wild-type mice. We assessed the effects of VIP on the membrane potential and the on excitatory synaptic input in vSPZ neurons. Results Using GCamp6-based in vitro calcium imaging we found that VIP excites 17% of vSPZ neurons and this effect was maintained in the presence of tetrodotoxin (TTX) and synaptic blockers for AMPA/NMDA and GABAA transmissions suggesting a direct effect of VIP on vSPZ neurons. We confirmed this result with patch-clamp recordings. We found that 29% of vSPZ neurons were excited by VIP. VIP produced a membrane depolarization of vSPZ neurons in the presence of antagonists for AMPA/NMDA and GABAA receptors. In addition, we found that in a small percentage of vSPZ neurons VIP increased the frequency of the glutamatergic excitatory postsynaptic currents, suggesting an additional excitatory mechanism. Conclusion Our results demonstrate that exogenous VIP directly excites the vSPZ neurons producing an increase in intracellular calcium and membrane depolarization. In addition, VIP increases glutamatergic afferent inputs to vSPZ neurons indicating an additional synergistic excitation. We conclude that when VIP is released from the SCN VIP fibers it can activate vSPZ neurons. Support (if any) NS091126 and HL149630.


2020 ◽  
Vol 21 (11) ◽  
pp. 3834
Author(s):  
Jueun Roh ◽  
Sung-Min Hwang ◽  
Sun-Ho Lee ◽  
Kihwan Lee ◽  
Yong Ho Kim ◽  
...  

Piezo channels are mechanosensitive ion channels. Piezo1 is primarily expressed in nonsensory tissues, whereas Piezo2 is predominantly found in sensory tissues, including dorsal root ganglion (DRG) neurons. However, a recent study demonstrated the intracellular calcium response to Yoda1, a selective Piezo1 agonist, in trigeminal ganglion (TG) neurons. Herein, we investigate the expression of Piezo1 mRNA and protein in mouse and human DRG neurons and the activation of Piezo1 via calcium influx by Yoda1. Yoda1 induces inward currents mainly in small- (<25 μm) and medium-sized (25–35 μm) mouse DRG neurons. The Yoda1-induced Ca2+ response is inhibited by cationic channel blocker, ruthenium red and cationic mechanosensitive channel blocker, GsMTx4. To confirm the specific inhibition of Piezo1, we performed an adeno-associated virus serotype 2/5 (AAV2/5)-mediated delivery of short hairpin RNA (shRNA) into mouse DRG neurons. AAV2/5 transfection downregulates piezo1 mRNA expression and reduces Ca2+ response by Yoda1. Piezo1 also shows physiological functions with transient receptor potential vanilloid 1 (TRPV1) in the same DRG neurons and is regulated by the activation of TRPV1 in mouse DRG sensory neurons. Overall, we found that Piezo1 has physiological functions in DRG neurons and that TRPV1 activation inhibits an inward current induced by Yoda1.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


2021 ◽  
Vol 22 (6) ◽  
pp. 2971
Author(s):  
Shizuka Takaku ◽  
Masami Tsukamoto ◽  
Naoko Niimi ◽  
Hideji Yako ◽  
Kazunori Sango

Besides its insulinotropic actions on pancreatic β cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron–IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.


2014 ◽  
Vol 70 (a1) ◽  
pp. C67-C67
Author(s):  
Babak Mostaghaci ◽  
Brigitta Loretz ◽  
Robert Haberkorn ◽  
Guido Kickelbick ◽  
Claus-Michael Lehr

Calcium phosphate has been the point of interest for in vitro gene delivery for many years because of its biocompatibility and straight forward application. However, there are some limitations regarding in vivo administration of these particles mostly because of vast agglomeration of the particles and lack of strong bond between the particles and pDNA. We introduced a simple single step method to functionalize calcium phosphate nanoparticles with Aminosilanes having a different number of amine groups. The nanoparticles were characterized chemically and structurally and their toxicity and interaction with pDNA were studied as well. Results revealed that different crystalline phase of calcium phosphate nanoparticles (Brushite and Hydroxyapatite) with a size below 150 nm were prepared, depending on conditions of synthesis and phase, each with a narrow size distribution. The aminosilane agents caused oriented nucleation and growth of crystallites and can decrease the pH for producing hydroxyapatite phase. The phenomenon could be revealed with the presence of anisotropy in the structure of synthesized hydroxyapatite. The number of amine groups in the Aminosilane agent could change the phase transition pH. Brushite particles revealed to have stronger interaction with pDNA mostly because of their higher positive surface charge. Both particles showed blood compatibility and negligible toxicity. Transfection experiment revealed the capability of both brushite and hydroxyapatite particles to transfect A549 and HEK293 cells. The new modified nanoparticles can be stored in a dried state and re-dispersed easily at the time of administration. Moreover, the transfection efficiency is higher in comparison with conventional calcium phosphate. This study showed the impact of presence and type of the modifying agent on the crystal structure and the amount of surface functionalization of nanoparticles, which in consequence influenced their interaction with cells.


Sign in / Sign up

Export Citation Format

Share Document