scholarly journals Histone Methyltransferases SUV39H1 and G9a and DNA Methyltransferase DNMT1 in Penumbra Neurons and Astrocytes after Photothrombotic Stroke

2021 ◽  
Vol 22 (22) ◽  
pp. 12483
Author(s):  
Svetlana Sharifulina ◽  
Valentina Dzreyan ◽  
Valeria Guzenko ◽  
Svetlana Demyanenko

Background: Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health and new targets for stroke therapy are needed. The transcriptional activity in the cell is regulated by epigenetic processes such as DNA methylation/demethylation, acetylation/deacetylation, histone methylation, etc. Changes in DNA methylation after ischemia can have both neuroprotective and neurotoxic effects depending on the degree of ischemia damage, the time elapsed after injury, and the site of methylation. Methods: In this study, we investigated the changes in the expression and intracellular localization of DNA methyltransferase DNMT1, histone methyltransferases SUV39H1, and G9a in penumbra neurons and astrocytes at 4 and 24 h after stroke in the rat cerebral cortex using photothrombotic stroke (PTS) model. Methods of immunofluorescence microscopy analysis, apoptosis analysis, and immunoblotting were used. Additionally, we have studied the effect of DNMT1 and G9a inhibitors on the volume of PTS-induced infarction and apoptosis of penumbra cells in the cortex of mice after PTS. Results: This study has shown that the level of DNMT1 increased in the nuclear and cytoplasmic fractions of the penumbra tissue at 24 h after PTS. Inhibition of DNMT1 by 5-aza-2′-deoxycytidine protected cells of PTS-induced penumbra from apoptosis. An increase in the level of SUV39H1 in the penumbra was found at 24 h after PTS and G9a was overexpressed at 4 and 24 h after PTS. G9a inhibitors A-366 and BIX01294 protected penumbra cells from apoptosis and reduced the volume of PTS-induced cerebral infarction. Conclusion: Thus, the data obtained show that DNA methyltransferase DNMT1 and histone methyltransferase G9a can be potential protein targets in ischemic penumbra cells, and their inhibitors are potential neuroprotective agents capable of protecting penumbra cells from postischemic damage to the cerebral cortex.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 867-867
Author(s):  
Nicole S.D. Larmonie ◽  
Marry M. van den Heuvel-Eibrink ◽  
Askar Obulkasim ◽  
Valerie de Haas ◽  
Dirk Reinhardt ◽  
...  

Abstract Primary refractory and relapsed pediatric acute myeloid leukemia (AML) still lead to a significant number of childhood cancer deaths, despite the current chemotherapeutic regimens. AML leukemogenesis is driven by collaborative genetic abnormalities that induce hematopoietic maturation arrest and cell proliferation. Particular AML-associated maturation inhibiting aberrations are known to target chromatin regulators, thus directly influencing the transcriptional program of leukemic cells. Therapies targeting epigenetic processes, e.g. with hypomethylation-inducing agents, are therefore becoming an attractive therapeutic strategy in adult AML. AML biology in children is not equivalent to that of adults, thus methylation patterns seen in adult AML cannot be extrapolated to pediatric AML. Therefore there is a need to unravel the mechanism behind changes in epigenetic processes as the result of AML-causing genetic abnormalities in order to develop new drugs for pediatric AML. We hypothesized that pediatric AML samples have distinct DNA-methylation patterns which may provide a rationale for treatment with demethylating agents in specific pediatric AML subtypes. Furthermore, these differences in methylation could be characteristic for AML subgroups and that particular methylation patterns drive the expression of specific genes which may play a key role in the tumorigenesis of these AML leukemias. We performed genome-wide CpG-island methylation profiling on a representative and molecularly characterized cohort of pediatric patients with de novo AML. Empirical Bayes Wilcoxon rank-sum test showed that AML patients carrying inv(16)(p13;q22) (n=9) have distinct DNA methylation patterns when compared to non-inv(16) AML patients (n=143) (consisting mainly of MLL-rearranged, t(8;21), t(15;17), t(8;16) AML and AML cases with a normal karyotype). The MN1 gene ranked as most significantly differentially methylated in inv(16) AML compared to non-inv(16) AML, with inv(16) AML cases having significantly (p=2x10-6) lower methylation levels compared to non-inv(16) AML cases. Hypomethylation of specific regions of the MN1-associated CpG-island was confirmed by methylation specific PCR and bisulfite sequencing. Subsequent gene expression (GEP) data on 294 pediatric AML patients showed that MN1 was 8 fold higher expressed in patients carrying inv(16) compared to all other patients (9.9, n=35 vs 6.9, n=259, p<0.001). Furthermore, integrating GEP and methylation array data showed that MN1 expression negatively correlated (ρs= 0.82, p=0.011) with methylation levels, which is in agreement with the biological assumption of methylation and gene expression. Since genes known to regulate DNA methylation have frequently been shown to be mutated in adult AML we determined whether a decreased expression of DNA methyltransferases, DNMT1, DNMT2, DNMT3A, DNMT3B, could be the cause of a hypometylated MN1 locus in inv(16) AML. Our findings show that only DNMT3B expression was significantly (p=8x10-15) lower in inv(16) cases compared to non-inv(16) cases. To test whether hypomethylation of the MN1 CpG-island and the overexpression of MN1 is the result of decreased DNMT1 expression, HL60 cells which express negligible levels of MN1 were treated with the DNMT1 inhibitor Decitabine. This showed that treatment of HL60 cells with Decitabine led to increase of MN1 transcript levels, however, not as high as those observed in patient samples. This suggests that DNMT1 activity may not be the only DNA methyltransferase influencing expression of MN1 in inv(16) patients. Interestingly, we observed a high (ρs= 0.42) correlation between MN1 methylation and DNMT3B expression, which suggests DNMT3B could be an important DNA methyltransferase involved in regulating MN1expression. Overall we show that pediatric AML patients carrying and inv(16) have a characteristic DNA methylation pattern compared to other AML patients carrying specific cytogenetic aberrations. Furthermore, our data suggest that hypomethylation of the MN1 gene is an underlying mechanism for high MN1 expression in inv(16)(p13;q22) patients possibly regulated by multiple DNA methyltransferases. Disclosures No relevant conflicts of interest to declare.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2020 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
K. Eurídice Juárez-Mercado ◽  
Fernando D. Prieto-Martínez ◽  
Norberto Sánchez-Cruz ◽  
Andrea Peña-Castillo ◽  
Diego Prada-Gracia ◽  
...  

Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.


Nature Plants ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 184-197
Author(s):  
Jianjun Jiang ◽  
Jie Liu ◽  
Dean Sanders ◽  
Shuiming Qian ◽  
Wendan Ren ◽  
...  

2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wendan Ren ◽  
Huitao Fan ◽  
Sara A. Grimm ◽  
Jae Jin Kim ◽  
Linhui Li ◽  
...  

AbstractDNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically ‘recognizes’ H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1’s activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Omeima Abdullah ◽  
Ziad Omran ◽  
Salman Hosawi ◽  
Ali Hamiche ◽  
Christian Bronner ◽  
...  

Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.


Sign in / Sign up

Export Citation Format

Share Document