scholarly journals Expanding the Structural Diversity of DNA Methyltransferase Inhibitors

2020 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
K. Eurídice Juárez-Mercado ◽  
Fernando D. Prieto-Martínez ◽  
Norberto Sánchez-Cruz ◽  
Andrea Peña-Castillo ◽  
Diego Prada-Gracia ◽  
...  

Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.

2020 ◽  
Author(s):  
K. Eurídice Juárez-Mercado ◽  
Fernando D. Prieto-Martínez ◽  
Norberto Sánchez-Cruz ◽  
Andrea Peña-Castillo ◽  
Diego Prada-Gracia ◽  
...  

AbstractInhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed Extended Connectivity Interaction Features approach, had an excellent agreement between the experimental IC50 values and docking scores.


2007 ◽  
Vol 28 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Kevin Myant ◽  
Irina Stancheva

ABSTRACT LSH, a protein related to the SNF2 family of chromatin-remodeling ATPases, is required for efficient DNA methylation in mammals. How LSH functions to support DNA methylation and whether it associates with a large protein complex containing DNA methyltransferase (DNMT) enzymes is currently unclear. Here we show that, unlike many other chromatin-remodeling ATPases, native LSH is present mostly as a monomeric protein in nuclear extracts of mammalian cells and cannot be detected in a large multisubunit complex. However, when targeted to a promoter of a reporter gene, LSH acts as an efficient transcriptional repressor. Using this as an assay to identify proteins that are required for LSH-mediated repression we found that LSH cooperates with the DNMTs DNMT1 and DNMT3B and with the histone deacetylases (HDACs) HDAC1 and HDAC2 to silence transcription. We show that transcriptional repression by LSH and interactions with HDACs are lost in DNMT1 and DNMT3B knockout cells but that the enzymatic activities of DNMTs are not required for LSH-mediated silencing. Our data suggest that LSH serves as a recruiting factor for DNMTs and HDACs to establish transcriptionally repressive chromatin which is perhaps further stabilized by DNA methylation at targeted loci.


Author(s):  
Soo Jung Park ◽  
Hyunmi Kim ◽  
Se Hyuk Kim ◽  
Eun-hye Joe ◽  
Ilo Jou

Abstract Multifunctional signal transducer and activator of transcription (STAT) proteins play important roles in cancer. Here, we have shown that STAT6 is epigenetically silenced in some cases of malignant glioblastoma, which facilitates cancer cell survival in a hypoxic microenvironment. This downregulation results from hypermethylation of CpG islands within the STAT6 promoter by DNA methyltransferases. STAT6 interacts with Rheb under hypoxia and inhibits mTOR/S6K/S6 signaling, in turn, inducing increased HIF-1α translation. STAT6 silencing and consequent tumor-promoting effects are additionally observed in glioma stem-like cells (GSC). Despite recent advances in cancer treatment, survival rates have shown little improvement. This is particularly true in the case of glioma, where multimodal treatment and precision medicine is needed. Our study supports the application of epigenetic restoration of STAT6 with the aid of DNA methyltransferase inhibitors, such as 5-aza-2-deoxycytidine, for treatment of STAT6-silenced gliomas.


2017 ◽  
Vol 29 (9) ◽  
pp. 1729 ◽  
Author(s):  
A. M. O'Doherty ◽  
L. C. O'Shea ◽  
O. Sandra ◽  
P. Lonergan ◽  
T. Fair ◽  
...  

The endometrium plays a key role in providing an optimal environment for attachment of the preimplantation embryo during the early stages of pregnancy. Investigations over the past 2 decades have demonstrated that vital epigenetic processes occur in the embryo during the preimplantation stages of development. However, few studies have investigated the potential role of imprinted genes and their associated modulators, the DNA methyltransferases (DNMTs), in the bovine endometrium during the pre- and peri-implantation period. Therefore, in the present study we examined the expression profiles of the DNMT genes (3A, 3A2 and 3B) and a panel of the most comprehensively studied imprinted genes in the endometrium of cyclic and pregnant animals. Intercaruncular (Days 5, 7, 13, 16 and 20) and caruncular (Days 16 and 20) regions were analysed for gene expression changes, with protein analysis also performed for DNMT3A, DNMT3A2 and DNMT3B on Days 16 and 20. An overall effect of day was observed for expression of several of the imprinted genes. Tissue-dependent gene expression was detected for all genes at Day 20. Differences in DNMT protein abundance were mostly observed in the intercaruncular regions of pregnant heifers at Day 16 when DNMT3A, DNMT3A2 and DNMT3B were all lower when compared with cyclic controls. At Day 20, DNMT3A2 expression was lower in the pregnant caruncular samples compared with cyclic animals. This study provides evidence that epigenetic mechanisms in the endometrium may be involved with implantation of the embryo during the early stages of pregnancy in cattle.


2012 ◽  
Vol 18 (3) ◽  
pp. 348-355 ◽  
Author(s):  
Marlinda Hupkes ◽  
Rita Azevedo ◽  
Hans Jansen ◽  
Everardus J. van Zoelen ◽  
Koen J. Dechering

DNA methylation is an important epigenetic regulator of gene expression. Abnormalities in DNA methylation patterns have been associated with various developmental and proliferative diseases, particularly cancer. Targeting DNA methyltransferases (DNMTs) represents a promising strategy for the treatment of such diseases. Current DNMT inhibitors suffer important drawbacks with respect to their efficacy, specificity, and toxicity. In this study, we have set up a robust in vitro bacterial M.SssI DNMT activity assay to systematically screen a collection of 26 240 compounds that were predicted to compete with the S-adenosyl-L-methionine (SAM) substrate of DNMT. This resulted in the identification of a novel set of structurally distinct inhibitors of M.SssI DNMT activity. Although molecular docking studies using an M.SssI homology model suggest that these compounds might compete with SAM binding, mode of activity (MoA) assays are still needed to confirm this hypothesis. Our set of novel M.SssI DNMT inhibitors, once confirmed in an orthogonal DNMT assay, may thus serve as a starting point to identify and characterize suitable lead candidates for further drug optimization.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 867-867
Author(s):  
Nicole S.D. Larmonie ◽  
Marry M. van den Heuvel-Eibrink ◽  
Askar Obulkasim ◽  
Valerie de Haas ◽  
Dirk Reinhardt ◽  
...  

Abstract Primary refractory and relapsed pediatric acute myeloid leukemia (AML) still lead to a significant number of childhood cancer deaths, despite the current chemotherapeutic regimens. AML leukemogenesis is driven by collaborative genetic abnormalities that induce hematopoietic maturation arrest and cell proliferation. Particular AML-associated maturation inhibiting aberrations are known to target chromatin regulators, thus directly influencing the transcriptional program of leukemic cells. Therapies targeting epigenetic processes, e.g. with hypomethylation-inducing agents, are therefore becoming an attractive therapeutic strategy in adult AML. AML biology in children is not equivalent to that of adults, thus methylation patterns seen in adult AML cannot be extrapolated to pediatric AML. Therefore there is a need to unravel the mechanism behind changes in epigenetic processes as the result of AML-causing genetic abnormalities in order to develop new drugs for pediatric AML. We hypothesized that pediatric AML samples have distinct DNA-methylation patterns which may provide a rationale for treatment with demethylating agents in specific pediatric AML subtypes. Furthermore, these differences in methylation could be characteristic for AML subgroups and that particular methylation patterns drive the expression of specific genes which may play a key role in the tumorigenesis of these AML leukemias. We performed genome-wide CpG-island methylation profiling on a representative and molecularly characterized cohort of pediatric patients with de novo AML. Empirical Bayes Wilcoxon rank-sum test showed that AML patients carrying inv(16)(p13;q22) (n=9) have distinct DNA methylation patterns when compared to non-inv(16) AML patients (n=143) (consisting mainly of MLL-rearranged, t(8;21), t(15;17), t(8;16) AML and AML cases with a normal karyotype). The MN1 gene ranked as most significantly differentially methylated in inv(16) AML compared to non-inv(16) AML, with inv(16) AML cases having significantly (p=2x10-6) lower methylation levels compared to non-inv(16) AML cases. Hypomethylation of specific regions of the MN1-associated CpG-island was confirmed by methylation specific PCR and bisulfite sequencing. Subsequent gene expression (GEP) data on 294 pediatric AML patients showed that MN1 was 8 fold higher expressed in patients carrying inv(16) compared to all other patients (9.9, n=35 vs 6.9, n=259, p<0.001). Furthermore, integrating GEP and methylation array data showed that MN1 expression negatively correlated (ρs= 0.82, p=0.011) with methylation levels, which is in agreement with the biological assumption of methylation and gene expression. Since genes known to regulate DNA methylation have frequently been shown to be mutated in adult AML we determined whether a decreased expression of DNA methyltransferases, DNMT1, DNMT2, DNMT3A, DNMT3B, could be the cause of a hypometylated MN1 locus in inv(16) AML. Our findings show that only DNMT3B expression was significantly (p=8x10-15) lower in inv(16) cases compared to non-inv(16) cases. To test whether hypomethylation of the MN1 CpG-island and the overexpression of MN1 is the result of decreased DNMT1 expression, HL60 cells which express negligible levels of MN1 were treated with the DNMT1 inhibitor Decitabine. This showed that treatment of HL60 cells with Decitabine led to increase of MN1 transcript levels, however, not as high as those observed in patient samples. This suggests that DNMT1 activity may not be the only DNA methyltransferase influencing expression of MN1 in inv(16) patients. Interestingly, we observed a high (ρs= 0.42) correlation between MN1 methylation and DNMT3B expression, which suggests DNMT3B could be an important DNA methyltransferase involved in regulating MN1expression. Overall we show that pediatric AML patients carrying and inv(16) have a characteristic DNA methylation pattern compared to other AML patients carrying specific cytogenetic aberrations. Furthermore, our data suggest that hypomethylation of the MN1 gene is an underlying mechanism for high MN1 expression in inv(16)(p13;q22) patients possibly regulated by multiple DNA methyltransferases. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Mojgan Naghitorabi ◽  
Ghasem Saki ◽  
Sedighe Gharishvandi

Background: A main epigenetic change in cancer is DNA methylation, which leads to the inactivation of tumor suppressor genes. Due to its reversible nature, many studies have focused on how to correct epigenetic imbalances via inhibiting DNA methyltransferases (DNMTs). Recent studies have shown that olsalazine can be a potent candidate for DNMT inhibition. Objectives: The current study aimed to assess the cytotoxic effect of olsalazine on MCF-7 cells and the expression of CDH1 and uPA, as cancer-related genes, compared to decitabine. Methods: The cytotoxicity of olsalazine and decitabine on MCF-7 cells was assessed by MTT assay. To evaluate the effect of drugs on the expression of CDH1 and uPA genes, MCF-7 cells were treated with olsalazine and decitabine in concentrations below their IC50 values. After 24 h, RNA of treated cells was extracted and then subjected to a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR). Results: The MTT assay showed that olsalazine was more toxic (IC50 = 1.75 mM) in MCF-7 cells than decitabine (IC50 = 3mM). Q-RT-PCR analysis showed that olsalazine can significantly increase uPA expression along with a non-significant increase in CDH1 expression. Meanwhile, no significant change was found in gene expression after treatment with decitabine. Conclusions: This study demonstrated that olsalazine was more cytotoxic than decitabine on MCF-7 cells. Also, compared to decitabine, olsalazine could increase the expression of CDH1 and uPA genes. It suggests that olsalazine might be more potent than decitabine in inhibiting DNMTs, although further studies are needed.


2014 ◽  
Vol 63 (4) ◽  
pp. 74-79
Author(s):  
Vsevolod Ivanovich Kiselev ◽  
Lev Andreyevich Ashrafyan ◽  
Vitaliy Fedorovich Bezhenar ◽  
Anna Alekseyevna Tsypurdeyeva

Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis. Therapy is mainly focused on reversion of DNA methylation by inhibiting DNA-methyltransferases and low level of acetylated histones by inhibiting histone deacetylases. DIM and epigallocatechin-3-gallate (EGCG) substances are believed to be an anticancer agent in part through its regulation of epigenetic processes. These agents demonstrate efficacy in cancer chemopreventive action and have potential to be used to current cancer therapies.


2019 ◽  
Vol 18 (28) ◽  
pp. 2448-2457 ◽  
Author(s):  
Zehao Zhou ◽  
Huan-Qiu Li ◽  
Feng Liu

Aberrant DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is associated with not only various cancers by silencing of tumor suppressor genes but also other diseases. The DNMTs, especially the DNMT1, DNMT3A and DNMT3B, are often overexpressed in various cancer tissues and cell lines. DNMTs are important epigenetic targets for drug development since the DNA methylation is reversible. This review summarizes an array of nucleoside and non-nucleoside inhibitors of DNMTs, as well as their biological activities. Among these inhibitors, the nucleoside analogue azacytidine and its deoxy derivative decitabine are both irreversible DNMT inhibitors and approved for the treatment of myelodysplastic syndrome.


Sign in / Sign up

Export Citation Format

Share Document