scholarly journals Oxidative Stress and Respiratory Diseases in Preterm Newborns

2021 ◽  
Vol 22 (22) ◽  
pp. 12504
Author(s):  
Laura Cannavò ◽  
Serafina Perrone ◽  
Valeria Viola ◽  
Lucia Marseglia ◽  
Gabriella Di Rosa ◽  
...  

Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.

2016 ◽  
Vol 68 (4) ◽  
pp. 877-881 ◽  
Author(s):  
Hong-Bo Li ◽  
Lin Wang ◽  
Zheng-Tao Gu ◽  
Xuan He ◽  
Lei Su

Despite high morbidity and mortality, no effective options are available for the treatment of acute lung injury (ALI). Therefore, the present study investigated the protective effect of honokiol (HK) on ALI via determination of its effect on several key biomarkers. The results of the study showed that HK significantly inhibited the infiltration of neutrophils and protein leakage induced by lipopolysaccharide (LPS) (p<0.05). The pretreatment with HK considerably boosted the endogenous antioxidant defense system to counteract the oxidative stress in LPS-induced ALI by elevating the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Moreover, the activity of toxic mediators, such as myeloperoxidase (MPO), and lipid peroxidation were significantly inhibited upon treatment with HK. In order to examine the mechanism of action of HK, its effect was quantified using matrix metalloproteinase-9 (MMP-9) activity in bronchoalveolar lavage fluid (BALF) by gelatin zymography. Pretreatment with HK considerably suppressed the activation of MMP-9 in a concentration-dependent manner. These findings suggest that HK protects from lung injury via inhibition of MMP-9, and by enhancing the activity of the endogenous antioxidant defense system.


2020 ◽  
Vol 45 (5) ◽  
pp. 621-629
Author(s):  
Mustafa Çiçek ◽  
Velid Unsal ◽  
Mehmet Kemal Tümer

AbstractObjectiveIn this study, we aimed to investigate the changes in the levels of oxidative stress and antioxidant enzymes on the mandibular bone caused by the expression of aquaporin-1 and aquaporin-3 proteins.Material and method14 Balb/C white mice were divided into two groups of seven, based on whether they are young or old. Mandibular tissue samples were taken for biochemical and histological analysis.ResultsFindings of our study has shown that, AQP-1 and AQP-3 immunoreactivity significantly decreased in mandibular bone tissues of aged mice in comparison to younger mice (p < 0.05). MDA and AOPP levels, which are the indicators of oxidative stress, increased in elderly mice and antioxidant defense system SOD enzyme activity was decreased (p < 0.05). The TNF-α cytokine level, which is the indicator for inflammations, was found to be higher in older mice than in young mice (p < 0.05).ConclusionAs a result, it was observed that cellular damage, disruption in water – electrolyte balance and increased inflammation that occur during the natural process of aging had caused serious and irreversible disturbances.


2013 ◽  
Vol 304 (5) ◽  
pp. E495-E506 ◽  
Author(s):  
S. Keipert ◽  
M. Ost ◽  
A. Chadt ◽  
A. Voigt ◽  
V. Ayala ◽  
...  

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


2009 ◽  
Vol 39 (4) ◽  
pp. 723-730 ◽  
Author(s):  
Jihong Qin ◽  
Qing Liu

In the subalpine zone of the Qinghai–Tibetan Plateau of China, Dragon spruce (Picea asperata Mast.) is commonly used for reforestation. The aim of the present work was to study the effects of seasonally frozen soil on the germination of P. asperata seeds and to investigate whether these effects were associated with resumption of the antioxidant defense system. The nonfrozen treatment resulted in near failure of germination (1%) and was associated with relatively high levels of hydrogen peroxide (H2O2) and low activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX). Germination of P. asperata seeds at 10 cm under the seasonally frozen soil was higher than that at 5 cm by 26%; this higher germination rate was associated with the recovery of SOD, CAT, and APX activities. The levels of malondialdehyde (MDA) in seeds from seasonally frozen treatments were higher than those in the nonfrozen treatment, implying greater lipid peroxidation and that frozen seeds might have suffered from oxidative stress. The results indicate that seasonally frozen soil facilitated the germination of P. asperata seeds and that germination was closely related to the resumption of antioxidant enzymes activity. Overall, these findings suggest that the disappearance of seasonally frozen ground caused by global warming might result in failure of regeneration of P. asperata.


2007 ◽  
Vol 23 (5-6-1) ◽  
pp. 181-191
Author(s):  
U. Kravchenko ◽  
G. Borjaev ◽  
M. Nevitov ◽  
A. Ostapchuk ◽  
E. Kistanova

The purpose of the present work was, under conditions of the model experiment on rats, to tap the information about the features of shortterm acclimatization of the antioxidant system in various organs to toxicity of cadmium at stages of an ontogenesis and about the preventive role of the antioxidant selenopyran in this process. The obtained results showed the ontogenetic differences in the adaptive reactivity of the enzymatic antioxidant defense system in the most important organs and tissues of rats under conditions of oxidative stress induced by cadmium. The ontogenetic differences of Se redistribution in a body under influence of cadmium administration were found. The discovered decrease of Se concentration in the liver of young animals and the increase of its concentration in the liver of old animals correlated positively with the changes of GPx activity. Preventive administration of selenopyran (9- phenyl-simmetrical octa-hydroselenoxanthene) to old animals reduced the oxidative stress intensity. Animals of all age groups showed higher selenium concentration in the tissues and the increase in the selenium-dependent GPx activity.


2021 ◽  
Vol 27 ◽  
Author(s):  
Yasuhiro Terasaki ◽  
Mika Terasaki ◽  
Akira Shimizu

: Radiation-induced lung injury is characterized by an acute pneumonia phase followed by a fibrotic phase. At the time of irradiation, a rapid, short-lived burst of reactive oxygen species (ROS) such as hydroxyl radicals (•OH) occurs, but chronic radiation-induced lung injury may occur due to excess ROS such as H2O2 , O2•− , ONOO− , and •OH. Molecular hydrogen (H2 ) is an efficient antioxidant that quickly diffuses cell membranes, reduces ROS such as •OH and ONOO− , and suppresses damage caused by oxidative stress in various organs. In 2011, through the evaluation of electron-spin resonance and fluorescent indicator signals, we had reported that H2 can eliminate •OH and can protect against oxidative stress-related apoptotic damage induced by irradiation of cultured lung epithelial cells. We had explored for the first time the radioprotective effects of H2 treatment on acute and chronic radiation-induced lung damage in mice by inhaled H2 gas (for acute) and imbibed H2 -enriched water (for chronic). Thus, we had proposed that H2 be considered a potential radioprotective agent. Recent publications have shown that H2 directly neutralizes highly reactive oxidants and indirectly reduces oxidative stress by regulating the expression of various genes. By regulating gene expression, H2 functions as an anti-inflammatory and anti-apoptotic molecule and promotes energy metabolism. The increased evidence obtained from cultured cells or animal experiments reveal a putative place for H2 treatment and its radioprotective effect clinically. This review focuses on major scientific advances of in the treatment of H2 as a new class of radioprotective agents.


Sign in / Sign up

Export Citation Format

Share Document