scholarly journals Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists

2021 ◽  
Vol 22 (22) ◽  
pp. 12510
Author(s):  
Raveena Nagareddy ◽  
Reju George Thomas ◽  
Yong Yeon Jeong

Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
R. Mikolajczak ◽  
S. Huclier-Markai ◽  
C. Alliot ◽  
F. Haddad ◽  
D. Szikra ◽  
...  

AbstractIn the frame of “precision medicine”, the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.


2021 ◽  
Vol 36 (3) ◽  
pp. 251-259
Author(s):  
Yi Tian ◽  
Peiyu Liu ◽  
Weisong Liu ◽  
Qiaojing Xu ◽  
Xiangkun Zhao

General anesthesia is necessary for patients to undergo surgery and invasive procedures. However, numerous preclinical studies have demonstrated widespread developmental neurotoxicity of the commonly used anesthetics and sedatives for the immature brain. Clinical studies also suggest a strong correlation between childhood anesthesia exposure and subsequent behavioral or cognitive impairment in adulthood. These findings have attracted increasing attention of anesthesiologists, pediatricians, and caregivers about the safety of anesthesia exposure in children, especially during early childhood. Herein, the aim of this review was to present the molecular mechanism of general anesthesia and its effects on the developing brain and introduce the recent clinical evidence of changes in cognition function post-childhood general anesthesia exposure. More importantly, some of the spots will be importantly discussed to scrutinize the phenomena; only in this way, it may help minimize or eliminate relevant risk factors.


2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Milad Ghorbani ◽  
Zhila Izadi ◽  
Samira Jafari ◽  
Eudald Casals ◽  
Foroogh Rezaei ◽  
...  

The wide prevalence of oxidative stress-induced diseases has led to a growing demand for antioxidant therapeutics worldwide. Nanozyme antioxidants are drawing enormous attention as practical alternatives for conventional antioxidants. The considerable body of research over the last decade and the promising results achieved signify the potential of nanozyme antioxidants to secure a place in the expanding market of antioxidant therapeutics. Nonetheless, there is no report on clinical trials for their further evaluation. Through analyzing in-depth selected papers which have conducted in vivo studies on nanozyme antioxidants, this review aims to pinpoint and discuss possible reasons impeding development of research toward clinical studies and to offer some practical solutions for future studies to bridge the gap between preclinical and clinical stages.


2019 ◽  
Vol 7 (27) ◽  
pp. 4319-4327 ◽  
Author(s):  
Sheng-Lei Hou ◽  
Shuang-Shuang Chen ◽  
Zhang-Jun Huang ◽  
Qing-Hua Lu

A drug self-framed delivery system (DSFDS) with dual-stimuli-responsive drug release and superhigh drug loaded capacity for efficient cancer chemotherapy is proposed.


Physiology ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 178-188 ◽  
Author(s):  
Jane F. Reckelhoff ◽  
Damian G. Romero ◽  
Licy L. Yanes Cardozo

One of the mechanisms responsible for blood pressure (BP) regulation is thought to be oxidative stress. In this review, we highlight preclinical studies that strongly support a role for oxidative stress in development and maintenance of hypertension in male animals, based on depressor responses to antioxidants, particularly tempol and apocynin. In females, oxidative stress seems to be important in the initial development of hypertension. However, whether maintenance of hypertension in females is mediated by oxidative stress is not clear. In clinical studies, pharmacological intervention to reduce BP with antioxidants has conflicting results, mostly negative. This review will discuss the uncertainties regarding blood pressure control and oxidative stress and potential reasons for these outcomes.


2018 ◽  
Vol 167 ◽  
pp. 299-309 ◽  
Author(s):  
Hongjuan Zhao ◽  
Li Li ◽  
Cuixia Zheng ◽  
Yongwei Hao ◽  
Mengya Niu ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Jiaxin Yang ◽  
Xi Fu ◽  
Xiaoli Liao ◽  
Yamin Li

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with limited available treatments and diverse causes. In ASD patients, numerous researches demonstrated various alterations in inflammation/immune, oxidative stress, and mitochondrial dysfunction, and these alterations could be regulated by Nrf2. Hence, we aimed to systematically review the current evidence about the effects of Nrf2 activator supplementation on ASD objects from in vitro studies, animal studies, and clinical studies. Relevant articles were retrieved through searching for the Cochrane Library, PubMed, Web of Science, Scope, Embase, and CNKI databases (through September 23, 2020). Ultimately, we identified 22 preclinical studies, one cell culture study, and seven clinical studies, covering a total of five Nrf2 activators. For each Nrf2 activator, we focused on its definition, potential therapeutic mechanisms, latest research progress, research limitations, and future development directions. Our systematic review provided suggestive evidence that Nrf2 activators have a potentially beneficial role in improving autism-like behaviors and abnormal molecular alterations through oxidant stress, inflammation, and mitochondrial dysfunction. These dietary phytochemicals are considered to be relatively safer and effective for ASD treatment. However, there are few clinical studies to support the Nrf2 activators as dietary phytochemicals in ASD, even though several preclinical studies. Therefore, caution should be warranted in attempting to extrapolate their effects in human studies, and better design and more rigorous research are required before they can be determined as a therapeutic option.


Sign in / Sign up

Export Citation Format

Share Document