scholarly journals Recent Findings Related to Cardiomyopathy and Genetics

2021 ◽  
Vol 22 (22) ◽  
pp. 12522
Author(s):  
Takanobu Yamada ◽  
Seitaro Nomura

With the development and advancement of next-generation sequencing (NGS), genetic analysis is becoming more accessible. High-throughput genetic studies using NGS have contributed to unraveling the association between cardiomyopathy and genetic background, as is the case with many other diseases. Rare variants have been shown to play major roles in the pathogenesis of cardiomyopathy, which was empirically recognized as a monogenic disease, and it has been elucidated that the clinical course of cardiomyopathy varies depending on the causative genes. These findings were not limited to dilated and hypertrophic cardiomyopathy; similar trends were reported one after another for peripartum cardiomyopathy (PPCM), cancer therapy-related cardiac dysfunction (CTRCD), and alcoholic cardiomyopathy (ACM). In addition, as the association between clinical phenotypes and the causative genes becomes clearer, progress is being made in elucidating the mechanisms and developing novel therapeutic agents. Recently, it has been suggested that not only rare variants but also common variants contribute to the development of cardiomyopathy. Cardiomyopathy and genetics are approaching a new era, which is summarized here in this overview.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 888
Author(s):  
Elizabeth Baskin ◽  
Peter DeFord ◽  
Allison F. Dennis ◽  
Ian Misner ◽  
Frederick J. Tan ◽  
...  

The rapid rise of high-throughput, data intensive experimental techniques has thrust many biologists into the role of data analyst – a role many biologists feel ill equipped to fill. Novices often struggle to find the resources and expertise they need to analyze their experimental results in a wet-lab environment. To fill this need, we developed an educational resource as part of a National Center for Biotechnology Information (NCBI) hackathon. Using RNA-seq as a model, our tutorial guides new users through the steps of data analysis, while placing an emphasis on understanding the motivation behind choices made in the process. To advance the goal of providing a deeper understanding of the analysis process, we developed a new tool, bamDiff. bamDiff allows users to compare the performance of multiple RNA-seq aligners, allowing users to select the most appropriate aligner for the data in question and experimental end-goal. Our tutorial is accessible via a GitHub wiki, with associated data and software provided on an Amazon Machine Image (AMI), which can be completed at no cost to the user through the Amazon Educate Program. Following the hackathon, our tutorial was integrated into the October 2015 offering of NCBI NOW (Next Generation Sequencing (NGS) Online Workshop) a free online experience targeting individuals new to NGS analysis.


2020 ◽  
Vol 52 (06) ◽  
pp. 427-434
Author(s):  
Jung Soo Lim ◽  
William E. Rainey

AbstractPrimary aldosteronism (PA) is the most common cause of secondary hypertension. The hallmark of PA is adrenal production of aldosterone under suppressed renin conditions. PA subtypes include adrenal unilateral and bilateral hyperaldosteronism. Considerable progress has been made in defining the role for somatic gene mutations in aldosterone-producing adenomas (APA) as the primary cause of unilateral PA. This includes the use of next-generation sequencing (NGS) to define recurrent somatic mutations in APA that disrupt calcium signaling, increase aldosterone synthase (CYP11B2) expression, and aldosterone production. The use of CYP11B2 immunohistochemistry on adrenal glands from normal subjects, patients with unilateral and bilateral PA has allowed the identification of CYP11B2-positive cell foci, termed aldosterone-producing cell clusters (APCC). APCC lie beneath the adrenal capsule and like APA, many APCC harbor somatic gene mutations known to increase aldosterone production. These findings suggest that APCC may play a role in pathologic progression of PA. Herein, we provide an update on recent research directed at characterizing APCC and also discuss the unanswered questions related to the role of APCC in PA.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Maaike van der Lee ◽  
Marjolein Kriek ◽  
Henk-Jan Guchelaar ◽  
Jesse J. Swen

The continuous development of new genotyping technologies requires awareness of their potential advantages and limitations concerning utility for pharmacogenomics (PGx). In this review, we provide an overview of technologies that can be applied in PGx research and clinical practice. Most commonly used are single nucleotide variant (SNV) panels which contain a pre-selected panel of genetic variants. SNV panels offer a short turnaround time and straightforward interpretation, making them suitable for clinical practice. However, they are limited in their ability to assess rare and structural variants. Next-generation sequencing (NGS) and long-read sequencing are promising technologies for the field of PGx research. Both NGS and long-read sequencing often provide more data and more options with regard to deciphering structural and rare variants compared to SNV panels—in particular, in regard to the number of variants that can be identified, as well as the option for haplotype phasing. Nonetheless, while useful for research, not all sequencing data can be applied to clinical practice yet. Ultimately, selecting the right technology is not a matter of fact but a matter of choosing the right technique for the right problem.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Liting Cheng ◽  
Xiaoyan Li ◽  
Lin Zhao ◽  
Zefeng Wang ◽  
Junmeng Zhang ◽  
...  

Purpose. Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors and bradycardia should be summarized and reevaluated. Methods. We summarized genetic studies published in the PubMed database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants. Results. We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database and classified ABCC9, ACTN2, CACNA1C, DES, HCN4, KCNQ1, KCNH2, LMNA, MECP2, LAMP2, NPPA, SCN5A, and TRPM4 as high-priority genes causing familial bradycardia. Most mutated genes have been reported as having multiple clinical manifestations. Conclusions. For patients with familial CCD, 13 high-priority genes are recommended for evaluation. For genetic studies, variants should be carefully evaluated using the ACMG/AMP variant classification framework before publication.


2014 ◽  
Author(s):  
Gundula Povysil ◽  
Sepp Hochreiter

We analyze the sharing of very short identity by descent (IBD) segments between humans, Neandertals, and Denisovans to gain new insights into their demographic history. Short IBD segments convey information about events far back in time because the shorter IBD segments are, the older they are assumed to be. The identification of short IBD segments becomes possible through next generation sequencing (NGS), which offers high variant density and reports variants of all frequencies. However, only recently HapFABIA has been proposed as the first method for detecting very short IBD segments in NGS data. HapFABIA utilizes rare variants to identify IBD segments with a low false discovery rate. We applied HapFABIA to the 1000 Genomes Project whole genome sequencing data to identify IBD segments that are shared within and between populations. Many IBD segments have to be old since they are shared with Neandertals or Denisovans, which explains their shorter lengths compared to segments that are not shared with these ancient genomes. The Denisova genome most prominently matches IBD segments that are shared by Asians. Many of these segments were found exclusively in Asians and they are longer than segments shared between other continental populations and the Denisova genome. Therefore, we could confirm an introgression from Deniosvans into ancestors of Asians after their migration out of Africa. While Neandertal-matching IBD segments are most often shared by Asians, Europeans share a considerably higher percentage of IBD segments with Neandertals compared to other populations, too. Again, many of these Neandertal-matching IBD segments are found exclusively in Asians, whereas Neandertal-matching IBD segments that are shared by Europeans are often found in other populations, too. Neandertal-matching IBD segments that are shared by Asians or Europeans are longer than those observed in Africans. These IBD segments hint at a gene flow from Neandertals into ancestors of Asians and Europeans after they left Africa. Interestingly, many Neandertal- and/or Denisova-matching IBD segments are predominantly observed in Africans - some of them even exclusively. IBD segments shared between Africans and Neandertals or Denisovans are strikingly short, therefore we assume that they are very old. Consequently, we conclude that DNA regions from ancestors of humans, Neandertals, and Denisovans have survived in Africans. As expected, IBD segments on chromosome X are on average longer than IBD segments on the autosomes. Neandertal-matching IBD segments on chromosome X confirm gene flow from Neandertals into ancestors of Asians and Europeans outside Africa that was already found on the autosomes. Interestingly, there is hardly any signal of Denisova introgression on the X chromosome.


2018 ◽  
Author(s):  
Greg Kellogg ◽  
Bolli Thorsson ◽  
Ying Cai ◽  
Robert Wisotzkey ◽  
Andrew Pollock ◽  
...  

AbstractFamilial hypercholesterolemia (FH) is a monogenic disease characterized by a lifelong exposure to high LDL-C levels that can lead to early onset coronary heart disease (CHD). The main causes of FH identified to date include loss-of-function mutations in LDLR or APOB, or gain-of-function mutations in PCSK9. Early diagnosis and genetic testing of FH suspects is critical for improved prognosis of affected individuals as lipid lowering treatments are effective in preventing CHD related morbidity and mortality. In the present manuscript, we developed a comprehensive next generation sequencing (NGS) panel which we applied on two different resources of FH in the Icelandic population: 62 subjects from 23 FH families with known or unknown culprit mutations, and a population-based sampling of 315 subjects selected for total cholesterol levels above the 95th percentile cut-point. The application of the NGS panel revealed significant diagnostic yields in identifying pathogenic LDLR mutations in both family and population-based genetic testing.


2020 ◽  
Vol 8 (2) ◽  
pp. 305 ◽  
Author(s):  
Molemi E. Rauwane ◽  
Udoka V. Ogugua ◽  
Chimdi M. Kalu ◽  
Lesiba K. Ledwaba ◽  
Adugna A. Woldesemayat ◽  
...  

Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 875
Author(s):  
Niki Mourtzi ◽  
Amalia Sertedaki ◽  
Athina Markou ◽  
George P. Piaditis ◽  
Evangelia Charmandari

Primary aldosteronism (PA), a condition characterized by autonomous aldosterone hypersecretion, constitutes the most common cause of secondary hypertension. Over the last decade, major breakthroughs have been made in the field of genetics underpinning PA. The advent and wide application of Next Generation Sequencing (NGS) technology led to the identification of several somatic and germline mutations associated with sporadic and familial forms of PA. Somatic mutations in ion-channel genes that participate in aldosterone biosynthesis, including KCNJ5, CACNA1D, ATP1A1, and ATP2B3, have been implicated in the development of aldosterone-producing adenomas (APAs). On the other hand, germline variants in CLCN2, KCNJ5, CACNA1H, and CACNA1D genes have been implicated in the pathogenesis of the familial forms of PA, FH-II, FH-III, and F-IV, as well as PA associated with seizures and neurological abnormalities. However, recent studies have shown that the prevalence of PA is higher than previously thought, indicating the need for an improvement of our diagnostic tools. Further research is required to recognize mild forms of PA and to investigate the underlying molecular mechanisms.


Lupus ◽  
2021 ◽  
pp. 096120332110339
Author(s):  
Tom N Lea-Henry ◽  
Aaron Chuah ◽  
Maurice Stanley ◽  
Vicki Athanasopoulos ◽  
Malcolm R Starkey ◽  
...  

Objective To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. Patients and methods 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005–0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. Results Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. Conclusions Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.


Author(s):  
М.М. Литвинова ◽  
К.Ф. Хафизов ◽  
К.А. Никольская ◽  
Л.В. Винокурова ◽  
Е.А. Дубцова ◽  
...  

Хронический панкреатит (ХП) представляет собой актуальную проблему современной медицины. При проявлении ХП у детей заболевание протекает особенно тяжело и часто требует хирургического лечения. В России работ по выявлению генетических причин панкреатита крайне мало. Еще меньше данных о влиянии генетических факторов на риск развития панкреатита у детей. В настоящей работе с помощью технологии массового параллельного секвенирования проведено генотипирование 25 больных ХП с манифестацией заболевания до 20 лет. Секвенировалась кодирующая последовательность генов SPINK1 и PRSS1. В группе обследуемых выявлено 11 носителей мутаций анализируемых генов, что составляет 44% от общего числа больных. Установлен спектр мутаций и особенности клинического течения ХП у лиц моложе 20 лет в России. Выявление молекулярно-генетической причины ХП позволяет прогнозировать характер течения заболевания и проводить профилактику болезни у ближайших родственников больного. Chronic pancreatitis (CP) is an urgent problem of modern medicine. If CP manifests in childhood, the course of the disease is particularly severe and often requires surgical treatment. In Russia there are few investigations of the genetic causes of pancreatitis. There is even less data on the influence of genetic factors on the pancreatitis development in children. In this study we performed genotyping of 25 CP patients with a clinical manifestation of the disease at the age under 20 years old. Genetic analysis was carried out by Next Generation Sequencing (NGS). All coding regions of the SPINK1 and PRSS1 genes were analyzed. Mutations of the mentioned genes were found in 11 patients (44%). The spectrum of mutations and the clinical course of CP in Russian individuals younger than 20 years old have been established. The identification of the molecular genetic cause of CP helps to predict the severity of the disease and to prevent the disease in the relatives of the patient.


Sign in / Sign up

Export Citation Format

Share Document