scholarly journals A Dynamic Network of Proteins Facilitate Cell Envelope Biogenesis in Gram-Negative Bacteria

2021 ◽  
Vol 22 (23) ◽  
pp. 12831
Author(s):  
Chris L. B. Graham ◽  
Hector Newman ◽  
Francesca N. Gillett ◽  
Katie Smart ◽  
Nicholas Briggs ◽  
...  

Bacteria must maintain the ability to modify and repair the peptidoglycan layer without jeopardising its essential functions in cell shape, cellular integrity and intermolecular interactions. A range of new experimental techniques is bringing an advanced understanding of how bacteria regulate and achieve peptidoglycan synthesis, particularly in respect of the central role played by complexes of Sporulation, Elongation or Division (SEDs) and class B penicillin-binding proteins required for cell division, growth and shape. In this review we highlight relationships implicated by a bioinformatic approach between the outer membrane, cytoskeletal components, periplasmic control proteins, and cell elongation/division proteins to provide further perspective on the interactions of these cell division, growth and shape complexes. We detail the network of protein interactions that assist in the formation of peptidoglycan and highlight the increasingly dynamic and connected set of protein machinery and macrostructures that assist in creating the cell envelope layers in Gram-negative bacteria.

1973 ◽  
Vol 19 (6) ◽  
pp. 753-756
Author(s):  
Terrence M. Hammill ◽  
Geno J. Germano

Glutaraldehyde-fixed, platinum-carbon-shadowed whole mounts, and ultrathin sections of glutaraldehyde-OsO4-fixed cells of Desulfovibrio desulfuricans were observed by electron microscopy. The preparations demonstrated a typical Vibrio form with a single polar flagellum. The cell envelope and the formation of external blebs were shown to be similar to other gram-negative bacteria. The protoplast, apparently devoid of mesosomes or other membranous structures, was densely packed with ribosomes and contained a fibrous nucleoid. A specialized region near the flagellar end of the cell was commonly observed and termed the basal apparatus. Cell division appeared to be by constriction.


mBio ◽  
2021 ◽  
Author(s):  
Nicholas P. Greene ◽  
Vassilis Koronakis

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2010 ◽  
Vol 192 (24) ◽  
pp. 6329-6335 ◽  
Author(s):  
A. K. Fenton ◽  
M. Kanna ◽  
R. D. Woods ◽  
S.-I. Aizawa ◽  
R. E. Sockett

ABSTRACT The Bdellovibrio are miniature “living antibiotic” predatory bacteria which invade, reseal, and digest other larger Gram-negative bacteria, including pathogens. Nutrients for the replication of Bdellovibrio bacteria come entirely from the digestion of the single invaded bacterium, now called a bdelloplast, which is bound by the original prey outer membrane. Bdellovibrio bacteria are efficient digesters of prey cells, yielding on average 4 to 6 progeny from digestion of a single prey cell of a genome size similar to that of the Bdellovibrio cell itself. The developmental intrabacterial cycle of Bdellovibrio is largely unknown and has never been visualized “live.” Using the latest motorized xy stage with a very defined z-axis control and engineered periplasmically fluorescent prey allows, for the first time, accurate return and visualization without prey bleaching of developing Bdellovibrio cells using solely the inner resources of a prey cell over several hours. We show that Bdellovibrio bacteria do not follow the familiar pattern of bacterial cell division by binary fission. Instead, they septate synchronously to produce both odd and even numbers of progeny, even when two separate Bdellovibrio cells have invaded and develop within a single prey bacterium, producing two different amounts of progeny. Evolution of this novel septation pattern, allowing odd progeny yields, allows optimal use of the finite prey cell resources to produce maximal replicated, predatory bacteria. When replication is complete, Bdellovibrio cells exit the exhausted prey and are seen leaving via discrete pores rather than by breakdown of the entire outer membrane of the prey.


2019 ◽  
Author(s):  
Jehangir Cama ◽  
Margaritis Voliotis ◽  
Jeremy Metz ◽  
Ashley Smith ◽  
Jari Iannucci ◽  
...  

AbstractThe double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for drug development, but this has proved elusive due to the complexity of the problem and a dearth of suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence microscopy to quantify antibiotic uptake label-free in hundreds of individual Escherichia coli cells. By manipulating the microenvironment, we showed that drug (ofloxacin) accumulation is higher in growing versus non-growing cells. Using genetic knockouts, we provide the first direct evidence that growth phase is more important for drug accumulation than the presence or absence of individual transport pathways. We use our experimental results to inform a mathematical model that predicts drug accumulation kinetics in subcellular compartments. These novel experimental and theoretical results pave the way for the rational design of new Gram-negative antibiotics.


2021 ◽  
Author(s):  
Alexandria B. Purcell ◽  
Bradley J. Voss ◽  
M. Stephen Trent

Gram-negative bacteria utilize glycerophospholipids (GPLs) as phospho-form donors to modify various surface structures. These modifications play important roles in bacterial fitness in diverse environments influencing cell motility, recognition by the host during infection, and antimicrobial resistance. A well-known example is the modification of the lipid A component of lipopolysaccharide by the phosphoethanolamine (pEtN) transferase EptA that utilizes phosphatidyethanoalmine (PE) as the phospho-form donor. Addition of pEtN to lipid A promotes resistance to cationic antimicrobial peptides (CAMPs), including the polymyxin antibiotics like colistin. A consequence of pEtN modification is the production of diacylglycerol (DAG) that must be recycled back into GPL synthesis via the diacylglycerol kinase A (DgkA). DgkA phosphorylates DAG forming phosphatidic acid, the precursor for GPL synthesis. Here we report that deletion of dgkA in polymyxin-resistant E. coli results in a severe reduction of pEtN modification and loss of antibiotic resistance. We demonstrate that inhibition of EptA is regulated post-transcriptionally and is not due to EptA degradation during DAG accumulation. We also show that the inhibition of lipid A modification by DAG is a conserved feature of different Gram-negative pEtN transferases. Altogether, our data suggests that inhibition of EptA activity during DAG accumulation likely prevents disruption of GPL synthesis helping to maintain cell envelope homeostasis.


2020 ◽  
Vol 295 (34) ◽  
pp. 11984-11994 ◽  
Author(s):  
Jean-François Collet ◽  
Seung-Hyun Cho ◽  
Bogdan I. Iorga ◽  
Camille V. Goemans

The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


2008 ◽  
Vol 190 (6) ◽  
pp. 2065-2074 ◽  
Author(s):  
Mary E. Laubacher ◽  
Sarah E. Ades

ABSTRACTGram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identifyEscherichia colistress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance ofE. colito β-lactam antibiotics.


Sign in / Sign up

Export Citation Format

Share Document