scholarly journals What Is the Role of HLA-I on Cancer Derived Extracellular Vesicles? Defining the Challenges in Characterisation and Potential Uses of This Ligandome

2021 ◽  
Vol 22 (24) ◽  
pp. 13554
Author(s):  
Caitlin Boyne ◽  
Debra Lennox ◽  
Olivia Beech ◽  
Simon J. Powis ◽  
Pankaj Kumar

The Human Leukocyte Antigen class I (HLA-I) system is an essential part of the immune system that is fundamental to the successful activation of cytotoxic lymphocytes, and an effective subsequent immune attack against both pathogen-infected and cancer cells. The importance of cytotoxic T cell activity and ability to detect foreign cancer-related antigenic peptides has recently been highlighted by the successful application of monoclonal antibody-based checkpoint inhibitors as novel immune therapies. Thus, there is an increased interest in fully characterising the repertoire of peptides that are being presented to cytotoxic CD8+ T cells by cancer cells. However, HLA-I is also known to be present on the surface of extracellular vesicles, which are released by most if not all cancer cells. Whilst the peptide ligandome presented by cell surface HLA class I molecules on cancer cells has been studied extensively, the ligandome of extracellular vesicles remains relatively poorly defined. Here, we will describe the current understanding of the HLA-I peptide ligandome and its role on cancer-derived extracellular vesicles, and evaluate the aspects of the system that have the potential to advance immune-based therapeutic approaches for the effective treatment of cancer.

1994 ◽  
Vol 10 (9) ◽  
pp. 1061-1064 ◽  
Author(s):  
FRANCESCO PUPPO ◽  
SABRINA BRENCI ◽  
ELEONORA MONTINARO ◽  
LORELLA LANZA ◽  
PAOLA CONTINI ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Aurore Brémond ◽  
Ophélie Meynet ◽  
Karim Mahiddine ◽  
Sylvie Coito ◽  
Mélanie Tichet ◽  
...  

Abstract By presenting antigenic peptides on the cell surface, human leukocyte antigen (HLA) class I molecules are critical for immune defense. Their surface density determines, to a large extent, the level of CD8+ T cell–dependent immune reactions; their loss is a major mechanism of immune escape. Therefore, powerful processes should regulate their surface expression. Here we document the mechanisms used by CD99 to mediate HLA class I modulation. Up-regulation of HLA class I by IFN-γ requires CD99. In the trans Golgi network (TGN), and up to the cell surface, CD99 and HLA class I are physically associated via their transmembrane domain. CD99 also binds p230/golgin-245, a coiled-coil protein that recycles between the cytosol and buds/vesicles of the TGN and which plays a fundamental role in trafficking transport vesicles. p230/golgin-245 is anchored within TGN membranes via its Golgin-97, RanBP1, IMh1p, P230 (GRIP) domain and the overexpression of which leads to surface and intracellular down-modulation of HLA class I molecules.


2001 ◽  
Vol 276 (50) ◽  
pp. 47320-47328 ◽  
Author(s):  
Jennifer Buslepp ◽  
Rui Zhao ◽  
Debora Donnini ◽  
Douglas Loftus ◽  
Mohamed Saad ◽  
...  

Recognition of virally infected cells by CD8+T cells requires differentiation between self and nonself peptide-class I major histocompatibility complexes (pMHC). Recognition of foreign pMHC by host T cells is a major factor in the rejection of transplanted organs from the same species (allotransplant) or different species (xenotransplant). AHIII12.2 is a murine T cell clone that recognizes the xenogeneic (human) class I MHC HLA-A2.1 molecule (A2) and the syngeneic murine class I MHC H-2 Dbmolecule (Db). Recognition of both A2 and Dbare peptide-dependent, and the sequences of the peptides recognized have been determined. Alterations in the antigenic peptides bound to A2 cause large changes in AHIII12.2 T cell responsiveness. Crystal structures of three representative peptides (agonist, null, and antagonist) bound to A2 partially explain the changes in AHIII12.2 responsiveness. Using class I pMHC octamers, a strong correlation is seen between T cell activity and the affinity of pMHC complexes for the T cell receptor. However, contrary to previous studies, we see similar half-lives for the pMHC multimers bound to the AHIII12.2 cell surface.


2020 ◽  
Vol 8 (1) ◽  
pp. e000410
Author(s):  
Jonathan S Cebon ◽  
Martin Gore ◽  
John F Thompson ◽  
Ian D Davis ◽  
Grant A McArthur ◽  
...  

BackgroundTo compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence.MethodsParticipants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity.ResultsThe ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≤0.0001) and NY-ESO-1-specific CD4+and CD8+responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants.ConclusionsThe vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4483-4483
Author(s):  
Marta Gomez-Nunez ◽  
Javier Pinilla-Ibarz ◽  
Tao Dao ◽  
Tatyana Korontsvit ◽  
Victoriya Zakhaleva ◽  
...  

Abstract Major Histocompatibility Complex class I (MHC-I) molecules present antigenic peptides to T cells on the cell surface as a prerequisite for stimulating cytotoxic T cell response. Thus, the ability to reliably identify the peptides that can bind to MHC molecules is of practical importance for rapid vaccine development. Several computer-based prediction methods have been applied to study the interaction of MHC class I/peptide binding. Here we have compared three of the most commonly used predictive algorithms BIMAS, SYFPEITHI and Rankpep with actual binding of HLA-A*0201 peptides in vitro. Forty six HLA-A*0201 peptides were selected from several target oncoproteins: Wilms’ tumor (WT1), native and imatinib- mutated bcr-abl p210 and JAK2 protein. Experimental peptide binding to HLA-A*0201 was assessed using a MHC stabilization assay on T2, TAP deficient cells. Peptides were considered to show positive in vitro binding if the mean fluorescence was at least 50 % of the binding of a high affinity reference peptide. Peptides qualified as positive in vitro if the BIMAS score was ≥ 100, the SYFPEITHI score ranked ≥ 24 or the Rankpep was ≥ 50. Results are summarized below: BIMAS SYFPEITHI RANKPEP Sensitivity 84 % 72 % 60 % Specificity 76 % 71 % 81 % Positive Predictive Value 84 % 72 % 60 % Negative Predictive Value 80 % 68 % 63 % Combining two or more computer methods did not appear to improve the predictive value. In conclusion, of the three predictive algorithms, the best correspondence with the actual MHC binding was demonstrated with the BIMAS algorithm. Predictive computer algorithms are important for preselection of potential T-cell epitope candidates for the application in vaccine design.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3168-3175
Author(s):  
Cécile Gouttefangeas ◽  
Marianne Diehl ◽  
Wieland Keilholz ◽  
Rainer Frank Hörnlein ◽  
Stefan Stevanović ◽  
...  

The origin and the function of HLA class I molecules present on the surface of human platelets are still unclear. In particular, it is controversial which fraction of these class I molecules represents integral membrane components derived from the megakaryocyte-platelet lineage versus soluble plasma HLA molecules acquired by adsorption. Results of the present study show that HLA-A2 ligands isolated from platelets possess the same peptide motif as described for HLA-A2-associated peptides obtained from nucleated cells. Sequencing of these platelet-derived peptides reveals that they originate mainly from ubiquitously expressed proteins also present in the megakaryocyte-platelet lineage. Moreover, one of these peptides derives from the GPIX protein, which is specifically expressed by platelets and their precursors. Platelet HLA molecules are unstable in vitro at 37°C, but can be partially stabilized by addition of exogenous β2-microglobulin and HLA class I binding peptide, suggesting that platelets cannot load HLA molecules with endogenous peptides. In in vitro experiments platelets were used to stimulate peripheral blood mononuclear cells. No allospecific cytotoxicity was observed after primary stimulation, or secondary restimulation, with allogenic resting or activated platelets, even in the presence of additional third-party helper activity. These data indicate that HLA class I molecules from platelets cannot directly induce allogenic CD8+ cytotoxic T-cell response in vitro.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 6025-6025
Author(s):  
Daniela Matei ◽  
Alok Pant ◽  
John William Moroney ◽  
Gini F. Fleming ◽  
Edward Tanner ◽  
...  

6025 Background: Platinum resistant ovarian cancer (PROC) remains a disease of high need. Immune checkpoint inhibitors (ICI) have modest activity. We hypothesized that priming with a hypomethylating agent (HMA) guadecitabine (G) will improve the anti-tumor activity of ICI in PROC by enhancing tumor cell recognition by CD8+ T cells. Methods: This open-label phase II study used a Simon’s two-stage design. Eligible patients (pts) had recurrent PROC; ECOG PS of 0-1; normal end organ function; and measurable disease. Up to 5 prior cytotoxic regimens were allowed. Treatment consisted of G 30mg/m2 sq D1-4 and pembrolizumab (P) 200mg iv D5. Each cycle was 21 days. The primary endpoint was response rate (RR). Secondary endpoints were progression-free survival (PFS), clinical benefit rate (CBR), and toxicity assessment. Translational endpoints were LINE1 methylation in PBMCs, global tumor methylation, and immune endpoints. Tumor biopsies were obtained at baseline and after 2 cycles. If 2 patients experienced clinical benefit in stage I [n = 16], enrollment proceeded to stage II. The null hypothesis was rejected for ≥ 6 responses in 35 evaluable patients. Results: 48 pts were enrolled, 43 were treated, and 33 were evaluable for response. Histology was serous (35), endometrioid (2), clear cell (3) and other (3). Median age was 63 (range 40-88) and median number of prior regimens was 4 [range 1-8]. Two PRs were recorded in the first stage, allowing second stage of enrollment. Overall, there were 2 PRs (RR = 6.6%) and 16 pts had stable disease (SD) [48%]. The clinical benefit rate (PR + SD > 3 months) was 27%. One patient continued treatment for > 2 yrs. Grade 3-4 related toxicities were neutropenia [20], lymphopenia, (9), anemia (2), neutropenic fever (1), rash (1), and others (8). There were 13 grade 3-4 SAEs and 4 grade 5 SAEs, assessed as being unrelated to treatment. LINE1 was hypomethylated in PBMCs D5 vs. D1 (n = 21, p = 0.001). Epic arrays measured global tumor methylation, with 39579 CpG sites (0.05%) being differentially methylated (C2D5 vs. C1D1, n = 11, paired t-test; p < 0.01). Main pathways affected included endosomal transport, K+ transport, cathecolamine secretion, etc. PDL1 staining in archival tissue showed tumor staining > 0 in 16 of 35 and tumor/stroma interface staining > 0 in 20 of 35 specimens. Antigen-specific cytotoxic T cell activity was increased in CD8+ cells from ascites (C2D5 vs. C1D1). Conclusions: G+P has modest anti-tumor activity in patients with PROC, but some patients experienced prolonged disease stabilization. Biomarkers of response are being investigated. Clinical trial information: NCT02901899.


2012 ◽  
Vol 287 (42) ◽  
pp. 34895-34903 ◽  
Author(s):  
Elena Lorente ◽  
Susana Infantes ◽  
David Abia ◽  
Eilon Barnea ◽  
Ilan Beer ◽  
...  

The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8+ lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.


Sign in / Sign up

Export Citation Format

Share Document