scholarly journals Polyurethane Foam Rafts Supported In Vitro Cultures of Rindera graeca Roots for Enhanced Production of Rinderol, Potent Proapoptotic Naphthoquinone Compound

2021 ◽  
Vol 23 (1) ◽  
pp. 56
Author(s):  
Mateusz Kawka ◽  
Irena Bubko ◽  
Mirosława Koronkiewicz ◽  
Beata Gruber-Bzura ◽  
Konstantia Graikou ◽  
...  

Unique phytochemical profile of plants belonging to Boraginaceae family provides a prolific resource of lipophilic pigments from the group of naphthoquinone derivatives. To overcome low compound content, the major obstacle of plant-based production, immobilization of Rindera graeca roots in in vitro cultures was implemented for efficient production of rinderol, novel furanonaphthoquinone derivative with anticancer properties. Chromatographic procedures revealed rinderol presence in extracts of all investigated root lines, derived both from root biomass and post-culture medium. Unexpectedly, in the second stage of the experiment, rinderol production was ceased in control, unmodified culture systems. On the contrary, roots immobilized on PUF rafts uniformly and stably produced rinderol, and its highest amount was noted for transformed root lines after 42 days of cultivation (222.98 ± 10.47 µg/flask). PUF occurred to be the main place of compound accumulation. Moreover, investigation of rinderol biological activity revealed its fast-acting cell death induction in HeLa cervical cancer cells at relatively low concentrations. Presented results revealed successful application of R. graeca roots immobilization on PUF rafts for production and in situ product removal of rinderol, novel lipophilic furanonaphthoquinone with suggested proapoptotic activity.

2019 ◽  
Vol 103 (6) ◽  
pp. 2583-2595 ◽  
Author(s):  
Antonio Reyes-Martínez ◽  
Marilena Antunes-Ricardo ◽  
Janet Gutiérrez-Uribe ◽  
María del Socorro Santos-Díaz

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 918 ◽  
Author(s):  
Afifa Zaeem ◽  
Samantha Drouet ◽  
Sumaira Anjum ◽  
Razia Khurshid ◽  
Muhammad Younas ◽  
...  

Linum usitatissimum biosynthesizes lignans and neolignans that are diet and medicinally valuable metabolites. In recent years, zinc oxide nanoparticles (ZnONPs) have emerged as potential elicitors for the enhanced biosynthesis of commercial secondary metabolites. Herein, we investigated the influence of biogenic ZnONPs on both seedlings and stem-derived callus of L. usitatissimum. Seedlings of L. usitatissimum grown on Murashige and Skoog (MS) medium supplemented with ZnONPs (1–1000 mg/L) presented the highest antioxidant activity, total phenolic content, total flavonoid content, peroxidase and superoxide dismutase activities at 500 mg/L, while the maximum plantlet length was achieved with 10 mg/L. Likewise, the high-performance liquid chromatography (HPLC) analysis revealed the enhanced production of secoisolariciresinol diglucoside, lariciresinol diglucoside, dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-β-coniferyl alcohol ether glucoside in the plantlets grown on the 500 mg/L ZnONPs. On the other hand, the stem explants were cultured on MS media comprising 1-naphthaleneacetic acid (1 mg/L) and ZnONPs (1–50 mg/L). The highest antioxidant and other activities with an enhanced rooting effect were noted in 25 mg/L ZnONP-treated callus. Similarly, the maximum metabolites were also accumulated in 25 mg/L ZnONP-treated callus. In both systems, the dose-dependent production of reactive oxygen species (ROS) was recorded, resulting in oxidative damage with a more pronounced toxic effect on in vitro cultures. Altogether, the results from this study constitute a first comprehensive view of the impact of ZnONPs on the oxidative stress and antioxidant responses in seedlings vs. in vitro cultures.


IAWA Journal ◽  
1993 ◽  
Vol 14 (1) ◽  
pp. ins1-11
Author(s):  
I. C. Nielsen

Stern 'chips' from large-diameter stern regions of Larix laricina were produced free of contaminating organisms. These chips, consisting of dormant vascular cambium sandwiched intact between mature xylem and phloem, were grown as in vitro cultures on the surface of an agar medium that supports apparently normal cambial cell division and xylogenesis. It was determined that auxin (l-naphthaIene acetic acid) together with nutrients at low concentrations in the medium was essential for cambial growth, whether chips were grown in continuous light or darkness. Fusiform cambial cells underwent successive periclinal divisions to produce radial files of enlarged, bordered-pitted, secondary-walled, lignified and autolysed earlywood tracheids. As many as 20 new tracheids per radial file were produced, and > 95% of these were autolysed after 35 days of culture.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4511
Author(s):  
Bushra Asad ◽  
Taimoor Khan ◽  
Faiza Zareen Gul ◽  
Muhammad Asad Ullah ◽  
Samantha Drouet ◽  
...  

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 549-558 ◽  
Author(s):  
J. Cooke ◽  
K. Symes ◽  
E.J. Smith

We have cultured explants of Xenopus blastular animal cap tissue from embryos that had received an earlier treatment with LiCl and from their untreated siblings, in various concentrations of XTC-cell-derived mesoderm-inducing factor (XTC-MIF, Smith, 1987; Smith et al. 1988). The pretreatment with lithium that we used transforms later morphogenesis in the whole embryo to give radialized body forms with anterior/dorsal levels of structure grossly over-represented. In addition, animal caps from ‘Li+’ embryos were allowed to develop without exposure to in vitro MIF (Li+ controls) and compared with normal uninduced control explants, and explants were made from normal early blastulae but given various initial treatments with LiCl in culture. The results confirm that the lithium ion itself will not induce mesoderm in competent, animal cap tissue of Xenopus. It does, however, enhance the responsiveness of this tissue to XTC-MIF, in a way that parallels its recently reported effect in the case of another mesoderm inducer of different character, bFGF (Slack et al. 1988). The effects observed are sufficient to imply that the altered body pattern that follows lithium treatment, in whole embryos, could be caused by modulation of the responses to an unaltered pattern of in situ inductive stimuli. We also observe evidence that appreciable inductive signals reach animal pole tissue beyond the limits of mesoderm formation in normal development. Relatively low concentrations of MIF prevent the development of an epidermis-specific marker in dissociated blastular animal cap cells (Symes et al. 1988). When such experiments are repeated in relation to the lithium pretreatment of embryos, such treatment is seen to have sensitized the cell population, so that the MIF concentration range that assures complete suppression of the marker is reduced. The results are discussed in relation to induction considered as pattern formation.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Wieczfinska ◽  
Ewa Skała ◽  
Tomasz Śliwiński ◽  
Przemysław Sitarek

The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document