scholarly journals The Effects of Royal Jelly Acid, 10-Hydroxy-Trans-2-Decenoic Acid, on Neuroinflammation and Oxidative Stress in Astrocytes Stimulated with Lipopolysaccharide and Hydrogen Peroxide

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 212-222
Author(s):  
Amira Mohammed Ali ◽  
Hiroshi Kunugi

The increased prevalence of neurodegenerative diseases, especially during the COVID-19 outbreak, necessitates the search for natural immune- and cognitive-enhancing agents. 10-Hydroxy-trans-2-decenoic acid (10-H2DA), the main fatty acid of royal jelly, has several pharmacological activities. Given the fundamental role of astrocytes in regulating immune responses of the central nervous system, we used cortical astrocytes to examine the effect of 10-H2DA on the expression of genes associated with neuroinflammation and the production of neurotrophins, as well as cellular resistance to H2O2-induced cytotoxicity. Astrocytes, pretreated with a range of concentrations of 10-H2DA for 24 h, were exposed to lipopolysaccharide (LPS) for 3 h, after which the expression of proinflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and neurotrophic factors (BDNF, GDNF, and IGF-1) was evaluated. In the absence of LPS, 10-H2DA had no significant effect on the mRNA expression of neurotrophins or cytokines except for IL-1β, which significantly increased with low doses of 10-H2DA (3 µM). 10-H2DA (10 µM) pretreatment of LPS-stimulated cells did not significantly inhibit the expression of cytokine encoding genes; however, it significantly lowered the mRNA expression of GDNF and tended to decrease BDNF and IGF-1 expression compared with LPS alone. Additionally, 10-H2DA did not protect astrocytes against H2O2-induced oxidative stress. Our data indicate no anti-inflammatory, antioxidant, or neurotrophic effect of 10-H2DA in astrocytes undergoing inflammation or oxidative stress. The effect of IGF-1 inhibition by 10-H2DA on neuronal ketogenesis needs investigation.

2004 ◽  
Vol 287 (1) ◽  
pp. G264-G273 ◽  
Author(s):  
Atul Sahai ◽  
Padmini Malladi ◽  
Hector Melin-Aldana ◽  
Richard M. Green ◽  
Peter F. Whitington

The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-α, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1–4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-α expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-β and TNF-α. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN−/− mice when compared with OPN+/+ mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.


2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.


Author(s):  
Maryam Gholamalizadeh ◽  
Samaneh Mirzaei Dahka ◽  
Hadi Sedigh Ebrahim-Saraie ◽  
Mohammad Esmail Akbari ◽  
Azam Pourtaheri ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Daniel P Harris

TNF-α initiates the expression of genes involved in the recruitment, adhesion, and transmigration of leukocytes to sites of inflammation. Here, we report that the protein arginine methyltransferase PRMT5 is required for the transcriptional induction of the pro-inflammatory chemokine CXCL10 (IP-10) in endothelial cells. Depletion of PRMT5 by siRNA results in significantly diminished TNF-α-induced CXCL10 mRNA expression, but does not affect expression of other chemokines, such as MCP-1 or IL-8. Chromatin immunoprecipitation experiments of the CXCL10 proximal promoter show the presence of symmetrical dimethylated arginine (sDMA)-containing proteins upon exposure to TNF-α. This methylation is completely lost when PRMT5 is removed from cells by siRNA. Using immunoprecipitation, we show that PRMT5 enhances CXCL10 expression by methylating the RelA (p65) subunit of NF-κB. In summary, we have identified that PRMT5 is a novel regulator of CXCL10 expression. Further, we have discovered that PRMT5 methylates NF-κB, a finding which may further knowledge of the post-translational code governing NF-κB regulation and target specificity.


1999 ◽  
Vol 112 (21) ◽  
pp. 3603-3617 ◽  
Author(s):  
J. Schlondorff ◽  
C.P. Blobel

Metalloprotease-disintegrins (ADAMs) have captured our attention as key players in fertilization and in the processing of the ectodomains of proteins such as tumor necrosis factor (α) (TNF(α)), and because of their roles in Notch-mediated signaling, neurogenesis and muscle fusion. ADAMs are integral membrane glycoproteins that contain a disintegrin domain, which is related to snake-venom integrin ligands, and a metalloprotease domain (which can contain or lack a catalytic site). Here, we review and critically discuss current topics in the ADAMs field, including the central role of fertilin in fertilization, the role of the TNF(α) convertase in protein ectodomain processing, the role of Kuzbanian in Notch signaling, and links between ADAMs and processing of the amyloid-precursor protein.


2021 ◽  
Vol 17 ◽  
Author(s):  
Lili Legiawati

: Diabetes mellitus is a metabolic disorder caused by an increase in insulin resistance, a decrease in insulin production, or both of them, resulting in a high level of blood glucose or hyperglycemia. An uncontrolled state of DM may cause complications, namely skin disorder. One or more skin disorders are found amongst 74% of T2DM patients, with the highest percentage is dry skin (47%), followed by infection (10%), diabetic hand (5%), hair loss and diabetic dermopathy (each 4%). In DM, the state of hyperglycemia and production of advanced glycaemic end-products (AGEs) profoundly impact skin changes. In the pathological pathway, AGEs induce oxidative stress and inflammation. Nonetheless, AGEs level is higher in T2DM patients compared to non-T2DM people. This is caused by hyperglycemia and oxidative stress. Binding between AGEs and receptor of AGEs (RAGE) promotes pathway of oxidative stress and inflammation cascade via mitogen-activated protein kinases (MAPK), nuclear factor-k-light-chain-enhancer of activated β cells (NF-kβ), interleukin- 6 (IL-6), tumor necrosis factor-α (TNF-α), expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 2 (VCAM-2) pathway which furtherly effectuates DM complication including skin disorders.


2021 ◽  
Author(s):  
Dina Marghani ◽  
Zhuo Ma ◽  
Anthony J. Centone ◽  
Weihua Huang ◽  
Meenakshi Malik ◽  
...  

Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control have classified F. tularensis as Category A Tier-1 Select Agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC ( FTL_ 0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for L-arabinose utilization and catabolism. The role of the FTL_ 0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_ 0689 in gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for L-arabinose utilization. Instead, FTL_ 0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR ( o xidative s tress r esponse r egulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE: The virulence mechanisms of category A select agent Francisella tularensis , the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis . The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella - specific regulatory mechanisms will identify potential targets for developing effective therapies and vaccines to prevent tularemia.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 530 ◽  
Author(s):  
Eugenie Mussard ◽  
Sundy Jousselin ◽  
Annabelle Cesaro ◽  
Brigitte Legrain ◽  
Eric Lespessailles ◽  
...  

Andrographis paniculata was widely used in traditional herbal medicine to treat various diseases. This study explored the potential anti-aging activity of Andrographis paniculata in cutaneous cells. Human, adult, low calcium, high temperature (HaCaT) cells were treated with methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12). Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by fluorescence using a 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and cytokines were quantified by ELISA for interleukin-8 (IL-8) or reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for tumor necrosis factor-α (TNF-α). Hyaluronic acid (HA) secretion was determined by an ELISA. Our results show a decrease in ROS production and TNF-α expression by ME (5 µg/mL) in HaCaT under pro-oxidant and pro-inflammatory conditions, respectively. ME protected HaCaT against oxidative stress and inflammation. Our findings confirm that ME can be used for the development of bioactive compounds against epidermal damage.


1998 ◽  
Vol 275 (2) ◽  
pp. R502-R508 ◽  
Author(s):  
Xianzhong Meng ◽  
Lihua Ao ◽  
Daniel R. Meldrum ◽  
Brian S. Cain ◽  
Brian D. Shames ◽  
...  

Exogenous tumor necrosis factor-α (TNF-α) induces delayed myocardial depression in vivo but promotes rapid myocardial depression in vitro. The temporal relationship between endogenous TNF-α and endotoxemic myocardial depression is unclear, and the role of TNF-α in this myocardial disorder remains controversial. Using a rat model of endotoxemia not complicated by shock, we sought to determine 1) the temporal relationship of changes in circulating and myocardial TNF-α with myocardial depression, 2) the influences of protein synthesis inhibition or immunosuppression on TNF-α production and myocardial depression, and 3) the influence of neutralization of TNF-α on myocardial depression. Rats were treated with lipopolysaccharide (LPS, 0.5 mg/kg ip). Circulating and myocardial TNF-α increased at 1 and 2 h, whereas myocardial contractility was depressed at 4 and 6 h. Pretreatment with cycloheximide or dexamethasone abolished the increase in circulating and myocardial TNF-α and preserved myocardial contractile function. Similarly, treatment with TNF binding protein immediately after LPS prevented myocardial depression. We conclude that endogenous TNF-α mediates delayed myocardial depression in endotoxemic rats and that inhibition of TNF-α production or neutralization of TNF-α preserves myocardial contractile function in endotoxemia.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 703 ◽  
Author(s):  
Ahlam Alhusaini ◽  
Laila Fadda ◽  
Iman H. Hasan ◽  
Enas Zakaria ◽  
Abeer M. Alenazi ◽  
...  

Lead (Pb) is a toxic heavy metal pollutant with adverse effects on the liver and other body organs. Curcumin (CUR) is the principal curcuminoid of turmeric and possesses strong antioxidant and anti-inflammatory activities. This study explored the protective effect of CUR on Pb hepatotoxicity with an emphasis on oxidative stress, inflammation and Akt/GSK-3β signaling. Rats received lead acetate and CUR and/or ascorbic acid (AA) for seven days and samples were collected for analyses. Pb(II) induced liver injury manifested by elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as histopathological alterations, including massive hepatocyte degeneration and increased collagen deposition. Lipid peroxidation, nitric oxide, TNF-α and DNA fragmentation were increased, whereas antioxidant defenses were diminished in the liver of Pb(II)-intoxicated rats. Pb(II) increased hepatic NF-κB and JNK phosphorylation and caspase-3 cleavage, whereas Akt and GSK-3β phosphorylation was decreased. CUR and/or AA ameliorated liver function, prevented tissue injury, and suppressed oxidative stress, DNA damage, NF-κB, JNK and caspase-3. In addition, CUR and/or AA activated Akt and inhibited GSK-3β in Pb(II)-induced rats. In conclusion, CUR prevents Pb(II) hepatotoxicity via attenuation of oxidative injury and inflammation, activation of Akt and inhibition of GSK-3β. However, further studies scrutinizing the exact role of Akt/GSK-3β signaling are recommended.


Sign in / Sign up

Export Citation Format

Share Document