scholarly journals Improved Massive MIMO RZF Precoding Algorithm Based on Truncated Kapteyn Series Expansion

Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 136 ◽  
Author(s):  
Xiaomei Xue ◽  
Zhengquan Li ◽  
Yongqiang Man ◽  
Song Xing ◽  
Yang Liu ◽  
...  

In order to reduce the computational complexity of the inverse matrix in the regularized zero-forcing (RZF) precoding algorithm, this paper expands and approximates the inverse matrix based on the truncated Kapteyn series expansion and the corresponding low-complexity RZF precoding algorithm is obtained. In addition, the expansion coefficients of the truncated Kapteyn series in our proposed algorithm are optimized, leading to further improvement of the convergence speed of the precoding algorithm under the premise of the same computational complexity as the traditional RZF precoding. Moreover, the computational complexity and the downlink channel performance in terms of the average achievable rate of the proposed RZF precoding algorithm and other RZF precoding algorithms with typical truncated series expansion approaches are analyzed, and further evaluated by numerical simulations in a large-scale single-cell multiple-input-multiple-output (MIMO) system. Simulation results show that the proposed improved RZF precoding algorithm based on the truncated Kapteyn series expansion performs better than other compared algorithms while keeping low computational complexity.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Wei ◽  
Lu Yin ◽  
Yue Xiao ◽  
Xu He ◽  
Shaoqian Li

Transmit antenna selection (TAS) is an efficient way for improving the system performance of spatial modulation (SM) systems. However, in the case of large-scale multiple-input multiple-output (MIMO) configuration, the computational complexity of TAS in large-scale SM will be extremely high, which prohibits the application of TAS-SM in a real large-scale MIMO system for future 5G wireless communications. For solving this problem, in this paper, two novel low-complexity TAS schemes, named as norm-angle guided subset division (NAG-SD) and threshold-based NAG-SD ones, are proposed to offer a better tradeoff between computational complexity and system performance. Simulation results show that the proposed schemes can achieve better performance than traditional TAS schemes, while effectively reducing the computational complexity in large-scale spatial modulation systems.


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


2021 ◽  
Author(s):  
SOURAV CHAKRABORTY ◽  
Nirmalendu Bikas Sinha ◽  
Monojit Mitra

Abstract This paper presents a low complexity pairwise layered tabu search (PLTS) based detection algorithm for a large-scale multiple-input multiple-output (MIMO) system. The proposed algorithm can compute two layers simultaneously and reduce the effective number of tabu searches. A metric update strategy is developed to reuse the computations from past visited layers. Also, a precomputation technique is adapted to reduce the redundancy in computation within tabu search iterations. Complexity analysis shows that the upper bound of initialization complexity in the proposed algorithm reduces from O(Nt4) to O(Nt3). The detection performance of the proposed detector is almost the same as the conventional complex version of LTS for 64QAM and 16QAM modulations. However, the proposed detector outperforms the conventional system for 4QAM modulation, especially in 16x16 and 8x8 MIMO. Simulation results show that the per cent of complexity reduction in the proposed method is approximately 75% for 64x64, 64QAM and 85% for 64x64 16QAM systems to achieve a BER of 10-3. Moreover, we have proposed a layer-dependent iteration number that can further reduce the upper bound of complexity with minor degradation in detection performance.


2021 ◽  
Vol 11 (16) ◽  
pp. 7305
Author(s):  
Uzokboy Ummatov ◽  
Jin-Sil Park ◽  
Gwang-Jae Jang ◽  
Ju-Dong Lee

In this study, a low complexity tabu search (TS) algorithm for multiple-input multiple-output (MIMO) systems is proposed. To reduce the computational complexity of the TS algorithm, early neighbor rejection (ENR) and layer ordering schemes are employed. In the proposed ENR-aided TS (ENR-TS) algorithm, the least promising k neighbors are excluded from the neighbor set in each layer, which reduces the computational complexity of neighbor examination in each TS iteration. For efficient computation of the neighbors’ metrics, the ENR scheme can be incorporated into QR decomposition-aided TS (ENR-QR-TS). To further reduce the complexity and improve the performance of the ENR-QR-TS scheme, a layer ordering scheme is employed. The layer ordering scheme determines the order in which layers are detected based on their expected metrics, which reduces the risk of excluding likely neighbors in early layers. The simulation results show that the ENR-TS achieves nearly the same performance as the conventional TS while providing up to 82% complexity reduction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Z. Y. Shao ◽  
S. W. Cheung ◽  
T. I. Yuk

Multiple-input multiple-output (MIMO) system is considered to be one of the key technologies of LTE since it achieves requirements of high throughput and spectral efficiency. The semidefinite relaxation (SDR) detection for MIMO systems is an attractive alternative to the optimum maximum likelihood (ML) decoding because it is very computationally efficient. We propose a new SDR detector for 256-QAM MIMO system and compare its performance with two other SDR detectors, namely, BC-SDR detector and VA-SDR detector. The tightness and complexity of these three SDR detectors are analyzed. Both theoretical analysis and simulation results demonstrate that the proposed SDR can provide the best BLER performance among the three detectors, while the BC-SDR detector and the VA-SDR detector provide identical BLER performance. Moreover, the BC-SDR has the lowest computational complexity and the VA-SDR has the highest computational complexity, while the proposed SDR is in between.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 306 ◽  
Author(s):  
Mahmoud A. Albreem ◽  
Mohammed H. Alsharif ◽  
Sunghwan Kim

Fifth-generation (5G) communications system is commercially introduced by several mobile operators where sub-6 GHz bands are the backbone of the 5G networks. A large-scale multiple-input multiple-output (MIMO), or massive MIMO (mMIMO), technology has a major impact to secure high data rate, high spectral efficiency, and quality of service (QoS). It could also have a major role in the beyond-5G systems. A massive number of antennas seek advanced signal processing to detect and equalize the signal. However, optimal detectors, such as the maximum likelihood (ML) and maximum posterior (MAP), are not desirable in implementation due to extremely high complexity. Therefore, sub-optimum solutions have been introduced to obtain and guarantee enough balance between the performance and the computational complexity. In this paper, a robust and joint low complexity detection algorithm is proposed based on the Jacobi (JA) and Gauss–Seidel (GS) methods. In such iterative methods, the performance, complexity, and convergence rate are highly dependent on the initial vector. In this paper, initial solution is proposed by exploiting the benefits of a stair matrix to obtain a fast convergence rate, high performance, and low complexity. Numerical results show that proposed algorithm achieves high accuracy and relieve the computational complexity even when the BS-to-user-antenna ratio (BUAR) is small.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 71 ◽  
Author(s):  
Mahmoud A. Albreem ◽  
Mohammed H. Alsharif ◽  
Sunghwan Kim

In massive multiple-input multiple-output (M-MIMO) systems, a detector based on maximum likelihood (ML) algorithm attains optimum performance, but it exhaustively searches all possible solutions, hence, it has a very high complexity and realization is denied. Linear detectors are an alternative solution because of low complexity and simplicity in implementation. Unfortunately, they culminate in a matrix inversion that increases the computational complexity in high loaded systems. Therefore, several iterative methods have been proposed to approximate or avoid the matrix inversion, such as the Neuamnn series (NS), Newton iterations (NI), successive overrelaxation (SOR), Gauss–Siedel (GS), Jacobi (JA), and Richardson (RI) methods. However, a detector based on iterative methods requires a pre-processing and initialization where good initialization impresses the convergence, the performance, and the complexity. Most of the existing iterative linear detectors are using a diagonal matrix ( D ) in initialization because the equalization matrix is almost diagonal. This paper studies the impact of utilizing a stair matrix ( S ) instead of D in initializing the linear M-MIMO uplink (UL) detector. A comparison between iterative linear M-MIMO UL detectors with D and S is presented in performance and computational complexity. Numerical Results show that utilization of S achieves the target performance within few iterations, and, hence, the computational complexity is reduced. A detector based on the GS and S achieved a satisfactory bit-error-rate (BER) with the lowest complexity.


Author(s):  
Alex M. Mussi ◽  
Taufik Abrão

AbstractA neighborhood-restricted mixed Gibbs sampling (MGS)-based approach is proposed for low-complexity high-order modulation large-scale multiple-input multiple-output (LS-MIMO) detection. The proposed LS-MIMO detector applies a neighborhood limitation (NL) on the noisy solution from the MGS at a distance d — thus, named d-simplified MGS (d-sMGS) — in order to mitigate its impact, which can be harmful when a high-order modulation is considered. Numerical simulation results considering 64-QAM demonstrated that the proposed detection method can substantially improve the MGS algorithm convergence, whereas no extra computational complexity per iteration is required. The proposed d-sMGS-based detector suitable for high-order modulation LS-MIMO further exhibits improved performance × complexity tradeoff when the system loading is high, i.e., when $\frac {K}{N}\geq 0.75$ K N ≥ 0.75 . Also, with increasing the number of dimensions, i.e., increasing number of antennas and/or modulation order, a smaller restriction of 2-sMGS was shown to be a more interesting choice than 1-sMGS.


Sign in / Sign up

Export Citation Format

Share Document