scholarly journals Stochastic Model of Spatial Fields of the Average Daily Wind Chill Index

Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 177
Author(s):  
Nina Kargapolova

The objective of this paper was to construct a numerical stochastic model of the spatial field of the average daily wind chill index on an irregular grid defined by the location of the weather stations. It is shown in the paper that the field in question was heterogeneous and non-Gaussian. A stochastic model based on the real data collected at the weather stations located in West Siberia and on the method of the inverse distribution function that sufficiently well reproduce different characteristics of the real field of the average daily wind chill index is proposed in this paper. I also discussed several questions related to the simulation of the field on a regular grid. In the future, my intention is to transform the model proposed to a model of the conditional spatio-temporal field defined on a regular grid that allows one to forecast the wind chill index.

2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


Author(s):  
Nina A. Kargapolova ◽  
Vasily A. Ogorodnikov

Abstract The paper presents the results of comparison of various methods of spatial interpolation of the wind chill index in two regions located in the South of Western Siberia (Russia). It is shown that stochastic interpolation provides the least interpolation error in the considered regions. The results of modelling the spatial and spatio-temporal fields of the considered bioclimatic index on a regular grid are presented.


2019 ◽  
Vol 35 (6) ◽  
pp. 1234-1270 ◽  
Author(s):  
Sébastien Fries ◽  
Jean-Michel Zakoian

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.


2013 ◽  
Vol 634-638 ◽  
pp. 4017-4021
Author(s):  
Jun Hui Pan ◽  
Hui Wang ◽  
Xiao Gang Yang

Aiming at the petrophysical facies recognition, a novel identification method based on the weighted fuzzy reasoning networks is proposed in the paper. First, the types and indicators are obtained from core analysis data and the results given by experts, and then the standard patterning database of reservoir petrophysical facies is established. Secondly, by integrating expert experiences and quantitative indicators to reflect the change of petrophysical facies, the classification model of petrophysical facies based on the weighted fuzzy reasoning networks is designed. The preferable application results are presented by processing the real data from the Sabei development zone of Daqing oilfield.


2021 ◽  
Vol 11 (11) ◽  
pp. 5025
Author(s):  
David González-Peña ◽  
Ignacio García-Ruiz ◽  
Montserrat Díez-Mediavilla ◽  
Mª. Isabel Dieste-Velasco ◽  
Cristina Alonso-Tristán

Prediction of energy production is crucial for the design and installation of PV plants. In this study, five free and commercial software tools to predict photovoltaic energy production are evaluated: RETScreen, Solar Advisor Model (SAM), PVGIS, PVSyst, and PV*SOL. The evaluation involves a comparison of monthly and annually predicted data on energy supplied to the national grid with real field data collected from three real PV plants. All the systems, located in Castile and Leon (Spain), have three different tilting systems: fixed mounting, horizontal-axis tracking, and dual-axis tracking. The last 12 years of operating data, from 2008 to 2020, are used in the evaluation. Although the commercial software tools were easier to use and their installations could be described in detail, their results were not appreciably superior. In annual global terms, the results hid poor estimations throughout the year, where overestimations were compensated by underestimated results. This fact was reflected in the monthly results: the software yielded overestimates during the colder months, while the models showed better estimates during the warmer months. In most studies, the deviation was below 10% when the annual results were analyzed. The accuracy of the software was also reduced when the complexity of the dual-axis solar tracking systems replaced the fixed installation.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


Sign in / Sign up

Export Citation Format

Share Document