scholarly journals Aqueous Solution Equilibria and Spectral Features of Copper Complexes with Tripeptides Containing Glycine or Sarcosine and Leucine or Phenylalanine

Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Giselle M. Vicatos ◽  
Ahmed N. Hammouda ◽  
Radwan Alnajjar ◽  
Raffaele P. Bonomo ◽  
Gabriele Valora ◽  
...  

Copper(II) complexes of glycyl-L-leucyl-L-histidine (GLH), sarcosyl-L-leucyl-L-histidine (Sar-LH), glycyl-L-phenylalanyl-L-histidine (GFH) and sarcosyl-L-phenylalanyl-L-histidine (Sar-FH) have potential anti-inflammatory activity, which can help to alleviate the symptoms associated with rheumatoid arthritis (RA). From pH 2–11, the MLH, ML, MLH-1 and MLH-2 species formed. The combination of species for each ligand was different, except at the physiological pH, where CuLH-2 predominated for all ligands. The prevalence of this species was supported by EPR, ultraviolet-visible spectrophotometry, and mass spectrometry, which suggested a square planar CuN4 coordination. All ligands have the same basicity for the amine and imidazole-N, but the methyl group of sarcosine decreased the stability of MLH and MLH-2 by 0.1–0.34 and 0.46–0.48 log units, respectively. Phenylalanine increased the stability of MLH and MLH-2 by 0.05–0.29 and 1.19–1.21 log units, respectively. For all ligands, 1H NMR identified two coordination modes for MLH, where copper(II) coordinates via the amine-N and neighboring carbonyl-O, as well as via the imidazole-N and carboxyl-O. EPR spectroscopy identified the MLH, ML and MLH-2 species for Cu-Sar-LH and suggested a CuN2O2 chromophore for ML. DFT calculations with water as a solvent confirmed the proposed coordination modes of each species at the B3LYP level combined with 6-31++G**.

2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


1985 ◽  
Vol 50 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Jana Podlahová ◽  
Josef Šilha ◽  
Jaroslav Podlaha

Ethylenediphosphinetetraacetic acid is bonded to metal ions in aqueous solutions in four ways, depending on the type of metal ion: 1) through an ionic bond of the carboxylic groups to form weak complexes with a metal:ligand ratio of 1 : 1 (Ca(II), Mn(II), Zn(II), Pb(II), La(III)); 2) through type 1) bond with contributions from weak interaction with the phosphorus (Cd(II)); 3) through coordination of the ligand as a monodentate P-donor with the free carboxyl groups with formation of 2 : 1 and 1 : 1 complexes (Cu(I), Ag(I)); 4) through formation of square planar or, for Hg(II), tetrahedral complexes with a ratio of 1 : 2 with the ligand as a bidentate PP-donor with the free carboxyl groups (Fe(II), Co(II), Ni(II), Pd(II), Pt(II)). On acidification of the complex solution, the first two protons are bonded to the carboxyl groups. The behaviour during further protonation depends on the type of complex: in complexes of types 1) and 2) phosphorus is protonated and the complex dissociates; in complexes of types 3) and 4) the free carboxyl groups are protonated and the phosphorus-metal bond remains intact. The results are based on correlation of the stability constants, UV-visible, infrared, 1H and 31P NMR spectra and magnetic susceptibilities of the complexes in aqueous solution.


1993 ◽  
Vol 58 (8) ◽  
pp. 1914-1918 ◽  
Author(s):  
Jaroslav Kříž ◽  
Luděk Taimr

The structure of a new compound formed in the reaction of ethoxyquin with alkylperoxy radicals was resolved by 1H and 13C NMR spectroscopy (including COSY, NOESY, HHC RCT and SSLR INEPT techniques) and confirmed by mass spectrometry. The structure suggest participation of 4-methyl group of ethoxyquin in the deactivation of peroxy radicals. A mechanism of this reaction is proposed.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Minji Lee ◽  
Donghwan Choe ◽  
Soyoung Park ◽  
Hyeongjin Kim ◽  
Soomin Jeong ◽  
...  

A novel thiosemicarbazide-based fluorescent sensor (AFC) was developed. It was successfully applied to detect hypochlorite (ClO−) with fluorescence quenching in bis-tris buffer. The limit of detection of AFC for ClO− was analyzed to be 58.7 μM. Importantly, AFC could be employed as an efficient and practical fluorescent sensor for ClO− in water sample and zebrafish. Moreover, AFC showed a marked selectivity to ClO− over varied competitive analytes with reactive oxygen species. The detection process of AFC to ClO− was illustrated by UV–visible and fluorescent spectroscopy and electrospray ionization–mass spectrometry (ESI–MS).


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 277
Author(s):  
Sabrina Krautbauer ◽  
Raquel Blazquez ◽  
Gerhard Liebisch ◽  
Marcus Hoering ◽  
Philip Neubert ◽  
...  

Lipids are a ubiquitous class of structurally complex molecules involved in various biological processes. In the fast-growing field of lipidomics, preanalytical issues are frequently neglected. Here, we investigated the stability of lipid profiles of murine liver, brain, lung, heart, and spleen homogenates by quantitative flow injection analysis using tandem mass spectrometry and high-resolution mass spectrometry. Storage of tissue homogenates at room temperature showed substantial alterations of the lipid profiles reflecting lipolytic action. Therefore, ratios of ceramide to sphingomyelin, lysophosphatidylethanolamine to phosphatidylethanolamine, lysophosphatidylcholine to phosphatidylcholine, and diglyceride to triglyceride were applied to monitor sample stability and the effect of sodium dodecyl sulfate (SDS) as a potential stabilizing agent. The addition of SDS led to a concentration-dependent stabilization of lipid profiles in liver, brain, and heart homogenates, while in lung and spleen homogenates, in particular, the lysophosphatidylethanolamine to phosphatidylethanolamine ratio increased upon addition of SDS. In conclusion, we demonstrated that lipid class ratios reflecting lipolytic activity could be applied to evaluate both the stability of samples and the influence of stabilizers.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1059
Author(s):  
Jin Young Lee ◽  
Kyoung Chan Lim ◽  
Hyun Suk Kim

As a first step toward studying the properties of Novichok (ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)), we investigated its degradation products and fragmentation pathways in aqueous solution at different pH levels by liquid chromatography–tandem mass spectrometry. A234 was synthesized in our laboratory and characterized by nuclear magnetic resonance spectroscopy. Three sets of aqueous samples were prepared at different pH levels. A stock solution of A234 was prepared in acetonitrile at a concentration of 1 mg/mL and stored at −20 °C until use. Aqueous samples (0.1 mg/mL) were prepared by diluting the stock solution with deionized water. The acidic aqueous sample (pH = 3.5) and basic aqueous sample (pH = 9.4) were prepared using 0.01 M acetic acid and 0.01 M potassium carbonate, respectively. The analysis of the fragmentation patterns and degradation pathways of A234 showed that the same degradation products were formed at all pH levels. However, the hydrolysis rate of A234 was fastest under acidic conditions. In all three conditions, the fragmentation pattern and the major degradation product of A234 were determined. This information will be applicable to studies regarding the decontamination of Novichok and the trace analysis of its degradation products in various environmental matrices.


1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


Sign in / Sign up

Export Citation Format

Share Document