scholarly journals First Insights into the Intrapuparial Development of Bactrocera dorsalis (Hendel): Application in Predicting Emergence Time for Tephritid Fly Control

Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 283 ◽  
Author(s):  
Jing ◽  
Zhang ◽  
Dou ◽  
Jiang ◽  
Wang

Intrapuparial development is a special pattern of metamorphosis in cyclorrhaphous flies, in which the pupa forms in an opaque, barrel-like puparium. This has been well studied in forensic insects for age estimations. In this study, the intrapuparial development of a quarantine agricultural pest, Bactrocera dorsalis (Hendel), was studied under a constant temperature of 27 ± 1 °C and 70 ± 5% relative humidity. Results showed that intrapuparial development could be divided into five stages: Larval-pupal apolysis, cryptocephalic pupa, phanerocephalic pupa, pharate adult, and emergent adult. It lays a morphology-based foundation for molecular mechanism studies and enhances the understanding of the physiological basis for changes in intrapuparial development. More importantly, the chronology of intrapuparial development can be used to predict the emergence time of tephritid flies, indicating when to spray insecticides to control these phytophagous agricultural pests. This may be an effective approach to reduce the use of insecticides and slow down the evolution of insecticidal resistance.

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 613
Author(s):  
Yuan Zheng ◽  
Zi-Wei Song ◽  
Yu-Ping Zhang ◽  
Dun-Song Li

We studied the parasitism capacity of Spalangia endius as a pupal parasite of Bactocera dorsalis after switching hosts. We used pupae of B. dorsalis and M. domestica as the hosts and studied parasitism by S. endius in the laboratory. The parasitism capacities were compared at different host densities and different parasitoid ages. The two functional responses of S. endius fitted a Holling Type II equation. More M. domestica were parasitized than B. dorsalis at all the densities. The ability of S. endius to control M. domestica was α/Th (parasitism capacity) = 32.1950, which was much stronger than that of control B. dorsalis, which was α/Th = 4.7380. The parasitism rate of wasps that had parasitized B. dorsalis had decreased by the emergence time of parasitoids. These results suggest that the parasitoid-pest ratio should be 1:25 to maintain a relatively stable parasitism rate for control of B. dorsalis. The S. endius colony reared on M. domestica successfully controlled a low-density population of B. dorsalis in the lab. We provide evidence suggesting that the parasitism capacity of S. endius needs to be improved.


2021 ◽  
Vol 5 (2) ◽  
pp. 309-320
Author(s):  
Putu Sabda Jayendra ◽  
Kadek Ayu Ekasani ◽  
Ida Bagus Subrahmaniam Saitya ◽  
Ida Bagus Subrahmaniam Saitya ◽  
Made Wahyu Mahendra

The knowledge of cultivation and the methods of treating and solving pest problems naturally without neglecting the local culture has been an inseparable aspect of Balinese agricultural life, which is known for its irrigation system called subak. This study aims to examine agricultural scripture named Usada Wisada Pari from two perspectives. First, this study examines the types of pests and its countermeasure. Secondly, it is important to study the lexicon form of these pests. This study shows that the types of rice pests in the Usada Wisada Pari text are categorized into two types, namely animals and plants. The countermeasure consists of natural ritual elements from plants and incantations. Furthermore, this research also shows that all kinds of plague and agricultural pests, along with ways to overcome them, reflect the very strong Shivaistic teachings. All kinds of diseases, countermeasures and prevention are described as the authority of Lord Shiva as the god of destruction in the Hindu concept. It can be concluded that the scripture of Usada Wisada Pari is a text that provides knowledge about rice pest antidotes in an environmentally friendly and holistic manner because it involves natural and religious elements. This study is expected to contribute both to academics or future researchers as well as to the public. It is hoped that academics and researchers can use this present study as a source and expand as well as deepen the object of study based on ethnoagriculture. Meanwhile, the general public can increase their knowledge regarding alternative management of agricultural epidemics in synergy with nature and local wisdom.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Guangli Yan ◽  
Aihua Zhang ◽  
Hui Sun ◽  
Weiping Cheng ◽  
Xiangcai Meng ◽  
...  

Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36) as a case study. The top 5 canonical pathways includingalpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.


2019 ◽  
Author(s):  
Angela Meccariello ◽  
Marco Salvemini ◽  
Pasquale Primo ◽  
Brantley Hall ◽  
Panagiota Koskinioti ◽  
...  

AbstractIn insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module producing sex-specific proteins that direct sex determination and sexual differentiation1-4. In the agricultural pest Ceratitis capitata (medfly), a Y-linked maleness factor (M) is thought to repress the autoregulatory splicing of transformer (Cctra), which is required in XX individuals to establish and maintain female sex determination5,6. Despite previous attempts of isolating Y-linked genes using the medfly whole genome, the M factor has remained elusive7. Here, we report the identification of a Y-linked gene, Maleness-on the-Y (MoY), and show that it encodes a small novel protein which is both necessary and sufficient for medfly male sex determination. Transient silencing of MoY in XY individuals leads to the development of fertile females while transient expression of MoY in XX individuals results in fertile males. Notably, a cross between these sex reverted individuals gives rise to both fertile males and females indicating that a functional MoY can be maternally transmitted. In contrast to the diversity of M factors found in dipteran species8-11, we discovered MoY orthologues in seven other Tephritid species spanning ∼111 millions of years of evolution (Mya). We confirmed their male determining function in the olive fly (Bactrocera oleae) and the oriental fruit fly (Bactrocera dorsalis). This unexpected conservation of the primary MoY signal in a large number of important agricultural pests12 will facilitate the development of transferable genetic control strategies in these species, for example sterile male releases or sex-ratio-distorting gene drives.


2019 ◽  
Vol 54 (4) ◽  
pp. 437-450
Author(s):  
Nobuo Morimoto ◽  
Keizi Kiritani ◽  
Kohji Yamamura ◽  
Takehiko Yamanaka

Abstract Agricultural imports are the primary pathway for the introduction of exotic insect pests. The invasion records of exotic insect pests are also influenced by the lag time before detection and saturation caused by the limited species pool of potential invaders. We compiled an exhaustive list of exotic insect species in mainland Japan and tried to evaluate the connection between the commodity types of agricultural imports and insect types of agricultural pests, in addition to the effects of lag time and saturation. We found that lag time was prominent when all pest types were merged into one group, whilst saturation always existed when we divided the records into the four agricultural pest types. Saturation was especially prominent in stored product pests because this group contained many cosmopolitan insect pests that could have easily inhabited the newly built mills throughout Japan in the 1950s. We suspect that the saturation effect was masked by admixture amongst pests with different saturation patterns. Our findings indicate that all commodities, i.e. flowers, fruits, vegetables, cereal and timber, contributed to the invasion of pest insects as potential pathways. However, it was unclear if certain items had comparatively greater significance in this process.


2011 ◽  
Vol 102 (1) ◽  
pp. 103-111 ◽  
Author(s):  
M.K. Schutze ◽  
A. Jessup ◽  
A.R. Clarke

AbstractFour morphologically cryptic species of the Bactrocera dorsalis fruit fly complex (B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis) are serious agricultural pests. As they are difficult to diagnose using traditional taxonomic techniques, we examined the potential for geometric morphometric analysis of wing size and shape to discriminate between them. Fifteen wing landmarks generated size and shape data for 245 specimens for subsequent comparisons among three geographically distinct samples of each species. Intraspecific wing size was significantly different within samples of B. carambolae and B. dorsalis s.s. but not within samples of B. papayae or B. philippinensis. Although B. papayae had the smallest wings (average centroid size=6.002 mm±0.061 SE) and B. dorsalis s.s. the largest (6.349 mm±0.066 SE), interspecific wing size comparisons were generally non-informative and incapable of discriminating species. Contrary to the wing size data, canonical variate analysis based on wing shape data discriminated all species with a relatively high degree of accuracy; individuals were correctly reassigned to their respective species on average 93.27% of the time. A single sample group of B. carambolae from locality ‘TN Malaysia’ was the only sample to be considerably different from its conspecific groups with regards to both wing size and wing shape. This sample was subsequently deemed to have been originally misidentified and likely represents an undescribed species. We demonstrate that geometric morphometric techniques analysing wing shape represent a promising approach for discriminating between morphologically cryptic taxa of the B. dorsalis species complex.


2019 ◽  
Vol 19 (S1) ◽  
Author(s):  
Elias D. Asimakis ◽  
Vangelis Doudoumis ◽  
Ashok B. Hadapad ◽  
Ramesh S. Hire ◽  
Costas Batargias ◽  
...  

Abstract Background Various endosymbiotic bacteria, including Wolbachia of the Alphaproteobacteria, infect a wide range of insects and are capable of inducing reproductive abnormalities to their hosts such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male-killing. These extended phenotypes can be potentially exploited in enhancing environmentally friendly methods, such as the sterile insect technique (SIT), for controlling natural populations of agricultural pests. The goal of the present study is to investigate the presence of Wolbachia, Spiroplasma,Arsenophonus and Cardinium among Bactrocera,Dacus and Zeugodacus flies of Southeast Asian populations, and to genotype any detected Wolbachia strains. Results A specific 16S rRNA PCR assay was used to investigate the presence of reproductive parasites in natural populations of nine different tephritid species originating from three Asian countries, Bangladesh, China and India. Wolbachia infections were identified in Bactrocera dorsalis, B. correcta, B. scutellaris andB. zonata, with 12.2–42.9% occurrence, Entomoplasmatales in B. dorsalis, B. correcta, B. scutellaris, B. zonata,Zeugodacus cucurbitae and Z. tau (0.8–14.3%) and Cardinium in B. dorsalis andZ. tau (0.9–5.8%), while none of the species tested, harbored infections with Arsenophonus. Infected populations showed a medium (between 10 and 90%) or low (< 10%) prevalence, ranging from 3 to 80% for Wolbachia, 2 to 33% for Entomoplasmatales and 5 to 45% for Cardinium. Wolbachia and Entomoplasmatales infections were found both in tropical and subtropical populations, the former mostly in India and the latter in various regions of India and Bangladesh. Cardinium infections were identified in both countries but only in subtropical populations. Phylogenetic analysis revealed the presence ofWolbachia with some strains belonging either to supergroup B or supergroup A. Sequence analysis revealed deletions of variable length and nucleotide variation in three Wolbachia genes. Spiroplasma strains were characterized as citri–chrysopicola–mirum and ixodetis strains while the remaining Entomoplasmatales to the Mycoides–Entomoplasmataceae clade.Cardinium strains were characterized as group A, similar to strains infecting Encarsia pergandiella. Conclusions Our results indicated that in the Southeast natural populations examined, supergroup A Wolbachia strain infections were the most common, followed by Entomoplasmatales and Cardinium. In terms of diversity, most strains of each bacterial genus detected clustered in a common group. Interestingly, the deletions detected in three Wolbachia genes were either new or similar to those of previously identified pseudogenes that were integrated in the host genome indicating putative horizontal gene transfer events in B. dorsalis, B. correcta and B. zonata.


2017 ◽  
Vol 10 (1) ◽  
pp. 267-275
Author(s):  
Godfred Futagbi ◽  
Nana Akosua Gyamfuah Koduah ◽  
Benyarku Richard Ampah ◽  
Precious Agbeko Dzorgbe Mattah ◽  
Maxwell Billah ◽  
...  

Background: Fruit flies, especially of the Family Terphritidae, are economically important pests for the horticulture industry because many species cause serious mechanical damage to a number of crops of different plant families. Studies have shown that some species of fruit flies have the potential to contaminate fruits and vegetables with enteric bacterial pathogens. However, this has not been conclusively demonstrated. Methods: In this study, we investigated enteric bacteria carriage by Bactrocera dorsalis and its possible role in transmission of microbes into internal tissues of fruits. Fruit flies trapped using liquid protein bait, ripe mango fruits exposed to the fruit flies and controls, as well as mangoes obtained from farms with and without fly-control traps, were analyzed for microbes, such as total aerobic bacteria, total coliforms, yeast and molds, Escherichia coli and Salmonella/Shigella spp. using direct culture methods. Results and Discussion: The results revealed that a high percentage of these insects carries pathogenic bacteria. This finding shows that, like B. cacuminata and B. tryoni, B. dorsalis also carries pathogenic microbes. It was also observed that mangoes sampled from fly-control farms had significantly lower microbial loads and proportions of fruits contaminated compared to those from farms without fly-control. Additionally, all microbial counts of internal tissues were significantly higher for exposed mangoes compared to unexposed mangoes. These data indicate that B. dorsalis contaminates not only the external but also internal tissues of mangoes. Conclusion: These findings show that B. dorsalis carries pathogenic bacteria and plays a direct role in internalization of microbes in mangoes.


Sign in / Sign up

Export Citation Format

Share Document