scholarly journals Low Host Specialization in the Cuckoo Wasp, Parnopes grandior, Weakens Chemical Mimicry but Does Not Lead to Local Adaption

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Carlo Polidori ◽  
Yolanda Ballesteros ◽  
Mareike Wurdack ◽  
Josep Daniel Asís ◽  
José Tormos ◽  
...  

Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts’ CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts’ profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps.

Parasitology ◽  
2018 ◽  
Vol 146 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Jesús Veiga ◽  
Paloma De Oña ◽  
Beatriz Salazar ◽  
Francisco Valera

AbstractHost range and parasite specificity determine key epidemiological, ecological and evolutionary aspects of host–parasite interactions. Parasites are usually classified as generalists or specialists based on the number of hosts they feed on. Yet, the requirements of the various stages of a parasite may influence the suitability of a given host species. Here, we investigate the generalist nature of three common ectoparasites (the dipteran Carnus hemapterus and two species of louse flies, Pseudolynchia canariensis and Ornithophila metallica), exploiting two avian host species (the European roller Coracias garrulus and the Rock pigeon Columba livia), that frequently occupy the same breeding sites. We explore the prevalence and abundance of both the infective and the puparial stages of the ectoparasites in both host species. Strong preferences of Pseudolynchia canariensis for pigeons and of Carnus hemapterus for rollers were found. Moderate prevalence of Ornithophila metallica was found in rollers but this louse fly avoided pigeons. In some cases, the infestation patterns observed for imagoes and puparia were consistent whereas in other cases host preferences inferred from imagoes differed from the ones suggested by puparia. We propose that the adult stages of these ectoparasites are more specialist than reported and that the requirements of non-infective stages can restrict the effective host range of some parasites.


Parasitology ◽  
1997 ◽  
Vol 115 (4) ◽  
pp. 419-427 ◽  
Author(s):  
F. TRIPET ◽  
H. RICHNER

Hosts exert selection pressures on their parasites and it is often assumed that host–parasite coevolution with each host is less intense in a generalist parasite than for a parasite with a narrow host range. Selection pressure on the parasite, however, is rather determined by host specificity, i.e. the relative importance of each host, than simply by the range of hosts. The determination of host specificity requires an assessment of the prevalence and intensity of parasite infestation within each host's nests, as well as the local abundance of each host species. Since the hen flea, Ceratophyllus gallinae, is a rather generalist parasite of birds it could be concluded that there has been weak coevolution with each of its hosts. By reviewing the literature on the prevalence and intensity of hen flea infestations in bird nests we estimated the number of individuals produced in the nest of each host species. The comparative analysis shows (1) that the prevalence of infestation is highest in hole-nesting avian families, (2) that prevalence and intensity of infestation among bird families are highly correlated, and (3) that hole-nesting Paridae have the highest intensities of infestation and harbour the majority of the flea population. These results underline the fleas' potential for coevolution with Paridae despite their extensive host range.


1986 ◽  
Vol 43 (11) ◽  
pp. 2295-2302 ◽  
Author(s):  
Daniel E. Wickham

Historical literature presenting quantitative information on the interaction between nemertean brood parasites of crustaceans and their hosts is reviewed and compared with recent detailed studies on epizootics of these parasites. Observations over the last century demonstrate that nemertean infestations on most host species are of low intensity and result in relatively low levels of host brood mortality. Epizootics discovered in the last decade on certain host species have resulted in extensive egg loss in many important commercial crustacean stocks. The data at hand suggest that epizootics are primarily restricted to commercially exploited species of decapods. One implication of this is that human exploitation affects natural host–parasite balance.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20171250 ◽  
Author(s):  
Tad Dallas ◽  
Shan Huang ◽  
Charles Nunn ◽  
Andrew W. Park ◽  
John M. Drake

Estimating the number of host species that a parasite can infect (i.e. host range) provides key insights into the evolution of host specialism and is a central concept in disease ecology. Host range is rarely estimated in real systems, however, because variation in species relative abundance and the detection of rare species makes it challenging to confidently estimate host range. We applied a non-parametric richness indicator to estimate host range in simulated and empirical data, allowing us to assess the influence of sampling heterogeneity and data completeness. After validating our method on simulated data, we estimated parasite host range for a sparsely sampled global parasite occurrence database (Global Mammal Parasite Database) and a repeatedly sampled set of parasites of small mammals from New Mexico (Sevilleta Long Term Ecological Research Program). Estimation accuracy varied strongly with parasite taxonomy, number of parasite occurrence records, and the shape of host species-abundance distribution (i.e. the dominance and rareness of species in the host community). Our findings suggest that between 20% and 40% of parasite host ranges are currently unknown, highlighting a major gap in our understanding of parasite specificity, host–parasite network structure, and parasite burdens.


Parasitology ◽  
2012 ◽  
Vol 139 (3) ◽  
pp. 310-316 ◽  
Author(s):  
RITA VENTIM ◽  
JOANA MORAIS ◽  
SARA PARDAL ◽  
LUÍSA MENDES ◽  
JAIME A. RAMOS ◽  
...  

SUMMARYThe host specificity and host sharing of avian haemoparasites (genera Haemoproteus and Plasmodium) is still poorly known, although they infect a large proportion of several studied bird populations. This study used molecular techniques to detect haemoparasites in marsh warblers and in other passerines that feed in reed beds, at 4 sites in Portugal. The host-specificity of the parasite lineages was analysed and compared with other cases described in the literature to assess whether apparent host specificity changes according to the studied system. Nine lineages of Haemoproteus and 15 of Plasmodium were found, of which only 10 Plasmodium were proven to have local transmission. Each lineage was confined to a distinct set of host species. The distribution of parasites in the host species was non-nested, meaning that specialist lineages did not always share hosts with generalists. The most prevalent lineages were those with a wider host range, indicating that the ability to infect more hosts will enhance a parasite's prevalence in its entire host range. We also found that in our areas, a specialist parasite (H. MW1) appears to have a more generalist character than described in the literature, suggesting that a parasite's apparent specialization can depend on the type of host species sampled.


2019 ◽  
Author(s):  
Víctor Hugo Jarquín-Díaz ◽  
Alice Balard ◽  
Anna Mácová ◽  
Jenny Jost ◽  
Tabea Roth von Szepesbéla ◽  
...  

AbstractIntracellular parasites of the genus Eimeria are described as tissue/host specific. Phylogenetic classification of rodent Eimeria suggested that some species have a broader host range than previously assumed. We explore if Eimeria spp. infecting house mice are misclassified by the most widely used molecular markers due to a lack of resolution, or if, instead, these parasite species are indeed infecting multiple host species.With the commonly used markers (18S/COI), we recovered monophyletic clades of E. falciformis and E. vermiformis from Mus that included E. apionodes identified in other rodent host species (Apodemus spp., Myodes glareolus, and Microtus arvalis). A lack of internal resolution in these clades could suggest the existence of a species complex with a wide host range infecting murid and cricetid rodents. We question, however, the power of COI and 18S markers to provide adequate resolution for assessing host specificity. In addition to the rarely used marker ORF470 from the apicoplast genome, we present multilocus genotyping as an alternative approach. Phylogenetic analysis of 35 nuclear markers differentiated E. falciformis from house mice from isolates from Apodemus hosts. Isolates of E. vermiformis from Mus are still found in clusters interleaved with non-Mus isolates, even with this high resolution data.In conclusion, we show that species-level resolution should not be assumed for COI and 18S markers in Coccidia. Host-parasite co-speciation at shallow phylogenetic nodes, as well as contemporary coccidian host ranges more generally, are still open questions that need to be addressed using novel genetic markers with higher resolution.


2019 ◽  
Vol 374 (1769) ◽  
pp. 20180204 ◽  
Author(s):  
Iliana Medina ◽  
Naomi E. Langmore

The spatial distribution of hosts can be a determining factor in the reproductive success of parasites. Highly aggregated hosts may offer more opportunities for reproduction but can have better defences than isolated hosts. Here we connect macro- and micro-evolutionary processes to understand the link between host density and parasitism, using avian brood parasites as a model system. We analyse data across more than 200 host species using phylogenetic comparative analyses and quantify parasitism rate and host reproductive success in relation to spatial distribution using field data collected on one host species over 6 years. Our comparative analysis reveals that hosts occurring at intermediate densities are more likely to be parasitized than colonial or widely dispersed hosts. Correspondingly, our intraspecific field data show that individuals living at moderate densities experience higher parasitism rates than individuals at either low or high densities. Moreover, we show for the first time that the effect of host density on host reproductive success varies according to the intensity of parasitism; hosts have greater reproductive success when living at high densities if parasitism rates are high, but fare better at low densities when parasitism rates are low. We provide the first evidence of the trade-off between host density and parasitism at both macro- and micro-evolutionary scales in brood parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.


1974 ◽  
Vol 25 (1) ◽  
pp. 21 ◽  
Author(s):  
SM Ali ◽  
WJR Boyd

The pathogenic variability of isolates of R. secalis collected in Western Australia has been examined on different host genera of the Gramineae and on selected barley cultivars. Depending on the host-isolate combination and the conditions of the test, evidence has been obtained of inter- and intra-isolate variability in both host reaction and isolate pathogenicity. This complicates definitive interpretation of the results, militates against identification of conventional 'races' of the pathogen and shows that R. secalis does not exhibit strict host specialization. Hosts which consistently express resistance or susceptibility under different environmental conditions, and isolates which express their pathogenic characteristics consistently, have been identified. The need for more precise genetic studies and adequate sampling of genetic diversity is emphasized.


Zootaxa ◽  
2021 ◽  
Vol 5039 (4) ◽  
pp. 561-570
Author(s):  
SUNIL JOSHI ◽  
HASEENA BHASKAR ◽  
V.S. AASHIQ POON ◽  
B.R. JAYANTHI MALA ◽  
P.D. KAMALA JAYANTHI ◽  
...  

The notoriously destructive and invasive soft scale, Ceroplastes cirripediformis Comstock (Hemiptera: Coccomorpha: Coccidae), is recorded for the first time from India. The scale is redescribed to facilitate its identification and information on its host range, natural enemies and distribution is provided. An identification key to the Indian species in this genus is given. Management options in the event of an outbreak are discussed briefly. The establishment of this scale insect warrants special attention in India as it is a potentially damaging plant pest and has a broad host range across many plant families.  


Sign in / Sign up

Export Citation Format

Share Document