scholarly journals Gene Characterization and Enzymatic Activities Related to Trehalose Metabolism of In Vitro Reared Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) under Sustained Cold Stress

Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 767
Author(s):  
Xin Lü ◽  
Shi-chou Han ◽  
Zhi-gang Li ◽  
Li-ying Li ◽  
Jun Li

Trichogramma spp. is an important egg parasitoid wasp for biocontrol of agriculture and forestry insect pests. Trehalose serves as an energy source or stress protectant for insects. To study the potential role of trehalose in cold resistance on an egg parasitoid, cDNA for trehalose-6-phosphate synthase (TPS) and soluble trehalase (TRE) from Trichogramma dendrolimi were cloned and characterized. Gene expressions and enzyme activities of TdTPS and TdTRE were determined in larvae, prepupae, pupae, and adults at sustained low temperatures, 13 °C and 16 °C. TdTPS and TdTRE expressions had similar patterns with higher levels in prepupae at 13 °C and 16 °C. TdTPS enzyme activities increased with a decrease of temperature, and TdTRE activity in prepupae decreased sharply at these two low temperatures. In vitro reared T. dendrolimi could complete entire development above 13 °C, and the development period was prolonged without cold injury. Results indicated trehalose might regulate growth and the metabolic process of cold tolerance. Moreover, 13 °C is the cold tolerance threshold temperature and the prepupal stage is a critical developmental period for in vitro reared T. dendrolimi. These findings identify a low cost, prolonged development rearing method, and the cold tolerance for T. dendrolimi, which will facilitate improved mass rearing methods for biocontrol.

Author(s):  
Francisco Alarcón Elvira ◽  
Violeta T. Pardío Sedas ◽  
David Martínez Herrera ◽  
Rodolfo Quintana Castro ◽  
Rosa María Oliart Ros ◽  
...  

Expression of the regulatory stress rpoS gene controls the transcription of cspA genes, which are involved in survival and adaptation to low temperatures. The purpose of this study was to assess the growth kinetics of naturally occurring V. parahaemolyticus in shellstock oysters and in vitro and the cold-shock-induced expression of the rpoS and cspA gene response in vitro during postharvest refrigeration. Naturally contaminated eastern oysters (Crassostrea virginica) and pathogenic (Vp-tdh) and nonpathogenic (Vp-tlh) isolates were stored at 7 ± 1 °C for 168 h and 216 h, respectively. The regulatory stress (rpos) and cold-shock (cspA) gene expressions were determined by reverse transcription PCR. At 24 h, the (Vp-tdh) strain grew faster (p < 0.05) than the (Vp-tlh) strain in oysters (λ = 0.33, 0.39, respectively) and in vitro (λ = 0.89, 37.65, respectively), indicating a better adaptation to cold shock for the (Vp-tdh) strain in live oysters and in vitro. At 24 h, the (Vp-tdh) strain rpoS and cspA gene expressions were upregulated by 1.9 and 2.3-fold, respectively, but the (Vp-tlh) strain rpoS and cspA gene expressions were repressed and upregulated by −0.024 and 1.9-fold, respectively. The V. parahaemolyticus strains that were isolated from tropical oysters have adaptive expression changes to survive and grow at 7 °C, according to their virulence.


2019 ◽  
Vol 113 (2) ◽  
pp. 695-699
Author(s):  
Sunil Shivananjappa ◽  
Robert A Laird ◽  
Kevin D Floate ◽  
Paul G Fields

Abstract Khapra beetle, Trogoderma granarium Everts, is unusual in two key respects. First, they are among the most cold hardy of stored-product insect pests even though they originate in hot and dry regions of the Indian subcontinent. Second, their larvae can enter into diapause to survive harsh environmental conditions. In the present study, we examined whether these two phenomena are related, i.e., due to cross-tolerance. Cross-tolerance is the tolerance to one ecological stress when induced by a separate stress. To investigate this, khapra beetle larvae were reared at different relative humidities (3, 28, 49, and 79%) in either nondiapausing or diapausing conditions. Then the cold tolerance of larvae was estimated by measuring mortality after different durations at −10°C. For nondiapausing larvae, relative humidity had little effect on cold tolerance with the lethal time to 50% mortality (LT50) occurring between 2 and 4 d. For diapausing larvae, cold tolerance increased with greater desiccation stress with LT50’s of 5, 7, 10, and 18 d at 79, 49, 28, and 3% RH, respectively. This suggests that the physiological mechanisms that protect diapausing larvae from desiccation may also increase cold tolerance, even though these insects may rarely be exposed to low temperatures.


2006 ◽  
Vol 72 (11) ◽  
pp. 7246-7252 ◽  
Author(s):  
Essaid Ait Barka ◽  
Jerzy Nowak ◽  
Christophe Clément

ABSTRACT In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.


Digestion ◽  
1982 ◽  
Vol 24 (1) ◽  
pp. 54-59 ◽  
Author(s):  
G. Isaksson ◽  
I. Lundquist ◽  
I. Ihse

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract


Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii348-iii348
Author(s):  
Tina Huang ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
Jin Qi ◽  
Rintaro Hashizume ◽  
...  

Abstract BACKGROUND Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas. This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase), resulting in reduced H3K36me on H3G34V nucleosomes relative to wild-type. This contributes to genomic instability and drives distinct gene expressions associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3G34V on genomic H3K36me3 enrichment in vitro. METHODS Doxycycline-inducible short hairpin RNA (shRNA) against H3F3A was delivered via lentivirus to established H3G34V mutant pediatric glioma cell line KNS42, and H3G34V introduced into H3.3 wild type normal human astrocytes (NHA). Transfections were confirmed by western blot, fluorescent imaging, and flow cytometry, with resulting H3.3WT and H3K36me3 expression determined by western blot. H3.3WT, H3K36me3, and H3G34V ChIP-Seq was performed to evaluate genomic enrichment. RESULTS Complete knockdown of H3G34V was achieved with DOX-induced shRNA, with no change in total H3.3, suggesting disproportionate allelic frequency of genes encoding H3.3 (H3F3A and H3F3B). Modest increase in H3K36me3 occurred after H3F3A-knockdown from KNS42, suggesting H3G34V alone impacts observed H3K36me3 levels. Distinct H3K36me3 genomic enrichment was observed with H3G34V knock-in. CONCLUSIONS We demonstrate that DOX-inducible knockdown of H3F3A in an H3G34V mutant pediatric glioma cells and H3G34V mutation transduction in wild-type astrocytes affects H3K36me3 expression. Further evaluation by ChIP-Seq analysis for restoration of wild-type genomic H3K36me3 enrichment patterns with H3G34V knockdown, and mutant H3K36me3 patterns with H3G34V transduction, is currently underway.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4439-4439
Author(s):  
Laura Fisher

Retraction of ‘MiR-206 reduced the malignancy of hepatocellular carcinoma cells in vitro by inhibiting MET and CTNNB1 gene expressions’ by Qiang He et al., RSC Adv., 2019, 9, 1717–1725, DOI: 10.1039/C8RA09229J


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie Shinohara ◽  
Hiroshi Arakawa ◽  
Yuuichi Oda ◽  
Nobuaki Shiraki ◽  
Shinji Sugiura ◽  
...  

AbstractExamining intestine–liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling. Herein, we demonstrated the potential of coculturing normal cells on MPSs in the evaluation of intestine–liver interactions. To this end, we cocultured human-induced pluripotent stem cell-derived intestinal cells and fresh human hepatocytes which were isolated from PXB mice with medium circulation in a pneumatic-pressure-driven MPS with pipette-friendly liquid-handling options. The cytochrome activity, albumin production, and liver-specific gene expressions in human hepatocytes freshly isolated from a PXB mouse were significantly upregulated via coculture with hiPS-intestinal cells. Our normal cell coculture shows the effects of the interactions between the intestine and liver that may occur in vivo. This study is the first to demonstrate the coculturing of hiPS-intestinal cells and fresh human hepatocytes on an MPS for examining pure inter-organ interactions. Normal-cell coculture using the multi-organ MPS could be pursued to explore unknown physiological mechanisms of inter-organ interactions in vitro and investigate the physiological response of new drugs.


Sign in / Sign up

Export Citation Format

Share Document