scholarly journals Crocodile blood supplementation protects vascular function in diabetic mice

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 356 ◽  
Author(s):  
Alessia Lo Curto ◽  
Simona Taverna ◽  
Maria Assunta Costa ◽  
Rosa Passantino ◽  
Giuseppa Augello ◽  
...  

Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) “young” and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.


2021 ◽  
Vol 904 ◽  
pp. 287-292
Author(s):  
Wan Song Zhang ◽  
Ya Jie Fu ◽  
Rui Wang ◽  
Xuan Hui Qiu ◽  
Ze Yuan Feng ◽  
...  

Endothelial cells (EC), which line the internal surface of blood vessels, play various essential roles in controlling vascular function. The mouse is an important animal model for the study of vascular biology and cardiovascular diseases. However, the isolation of primary EC from the murine aorta is challenging because they are readily contaminated by smooth muscle cells (SMC). A previous study developed a simple method to isolate murine EC from SMC. By taking advantage of the differential sedimentation rate between the two cells, the EC was selectively enriched with collagen-coated polystyrene surfaces. Our study further improved this method by introducing a biomimetic peptide REDV (Arg-Glu-Asp-Val), which may bind specifically to EC but not to SMC or fibroblasts. Firstly, REDV-gelatin conjugate was synthesized by using the amine-to-sulfhydryl crosslinker SMCC. REDV-gelatin coating was then prepared on polystyrene surfaces, and their affinities to EC and SMC were subsequently investigated. Fluorescence microscopy and flow cytometric analysis showed that EC adhesion to the gelatin coating was significantly promoted by REDV peptide conjugation. Moreover, cell migration assay and cell viability assay also showed that the conjugation of REDV does not affect EC migration, and this coating did not show cytotoxicity against EC. This gelatin-REDV coating provides a cost-effective and straightforward tool for isolating EC from SMC, which may facilitate in vitro investigations of EC from mice.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Jung-Joon Cha ◽  
Hoyeon Lee ◽  
Miyoung Kim ◽  
Juyoung Kang ◽  
Hanlim Song ◽  
...  

Abstract Vascular endothelial cells are essential to vascular function and maintenance. Dysfunction of these cells can lead to the development of cardiovascular disease or contribute to tumorigenesis. As such, the therapeutic modulation and monitoring of vascular endothelial cells are of significant clinical interest, and several endothelial-specific ligands have been developed for drug delivery and the monitoring of endothelial function. However, the application of these ligands has been limited by their high cost and tendency to induce immune responses, highlighting a need for alternate methods of targeting vascular endothelial cells. In the present study, we explore the therapeutic potential of DNA aptamers. Using cell-SELEX technology, we identified two aptamers with specific binding affinity for vascular endothelial cells and propose that these molecules show potential for use as new ligands for drug and biomarker research concerning vascular endothelial cells.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Markus Theurl ◽  
Andrea Schroll ◽  
Igor Theurl ◽  
Daniela Lener ◽  
Wolfgang-Michael Franz ◽  
...  

Introduction: Lipocalin-2 (Lcn2) is an acute phase protein and a marker of kidney injury. Recently, elevated Lcn2-levels have been reported in heart failure and myocardial infarction. Moreover, stimulation of breast cancer angiogenesis was observed. Thus, we hypothesized that Lcn2 may be a regulator of vascular function and a target for the treatment of ischemic vascular disorders. Methods/Results: In-vitro Lcn2 mediated proliferation of human umbilical vein endothelial cells (HUVEC; rel. proliferation Lcn2 10 nM vs. ctr.: 1.4±0.09, n=3, P<0.001) and human coronary artery endothelial cells (HCAEC; rel. proliferation Lcn2 10 nM vs. ctr.: 1.3±0.07, n=3, P<0.01) as determined by BrdU-incorporation. In the in-vitro matrigel assay stimulation of HUVEC (1.4 fold vs. ctr., n=3, P<0.01) and HCAEC (1.6 fold vs. ctr., n=3, P<0.001) with Lcn2 resulted in a significant induction of capillary like tube formation. All effects were similar to vascular endothelial growth factor (VEGF). Mechanistically these results can be traced back to phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Real-time PCR analyses revealed expression of Lcn2 and its receptor by endothelial cells (EC) as well as a hypoxia-dependent up-regulation (rel. Lcn2 mRNA hypoxia vs. normoxia 1.6±0.2, P<0.05; rel. Lcn2-receptor mRNA hypoxia vs. normoxia 2.6±0.2, P<0.001). In the mouse aortic ring assay Lcn2-treatment resulted in a significant outgrowth of EC similar to VEGF. In the hind limb ischemia (HLI) model Lcn2 -/- mice showed an impressive phenotype. After induction of HLI we detected significantly more tissue defects compared to wild type (WT) mice. The ischemia-related lesions were more severe as determined by necrosis score (necrosis score Lcn2 -/- 1.8±0.2 vs. WT 0.7±0.2, n=5, P<0.01) and amputation rate was significantly higher. In ischemic hind limbs of Lcn2 -/- mice ERK1/2-phosphorylation was almost abrogated which might be an underlying mechanism. Transplantation of WT-bone marrow to irradiated Lcn2 -/- mice didn’t influence the outcome suggesting that observed effects are rather endothelium-dependent than influenced by an inflammatory response. Conclusion: Lcn2 might be a promising therapeutic factor for the treatment of ischemic vascular disorders.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ryan Stone ◽  
David Chaffin ◽  
David Jude ◽  
Zeid Khitan ◽  
Dong Hyun Kim ◽  
...  

Introduction: Endothelial Progenitor cells (EPCs) are bone marrow derived cells that migrate and differentiate into mature endothelial cells and play a significant role in the re-endothelialization and neovascularization of injured endothelium and restoration of vascular function. We examined whether obesity and hypertension exacerbates the levels of biomarkers including circulating endothelial cells (CEC), serum inflammatory cytokines, and the levels of heme oxygenase -1 (HO-1) in EPC. Methods: Peripheral blood from 10 normal, 15 obese, 12 hypertensive, 20 obese-hypertensive and 15 diabetic patients was analyzed for inflammatory cytokines, CEC number, adiponectin and HO-1 levels. Results: The levels of inflammatory cytokines increased with BMI and directly correlated with increasing obesity. Similarly, hypertensive patients have elevated CEC which are further increased in obese hypertensive patients (p<.05). HO-1 was reduced (p<.05) in both hypertensive and obese patients when compared to control. Similarly serum adiponectin levels were lower in hypertensive obese patients when compared to controls (p<.01). Inflammatory cytokines IL-1, IL-6, MCP-1 and TNFα were elevated in obese hypertensive patients compared to non-obese hypertensive patients (p<.05). Conclusion: We demonstrated in hypertension patients that obesity exacerbates vascular dysfunction and increases circulating endothelial cells and inflammatory cytokines. A reduction in the levels of HO-1 and adiponectin imply reduced antioxidant levels which are contributing factors towards vascular and adipocyte dysfunction in hypertension patients. Thus upregulation of HO-1 offers a potential therapeutic approach in the treatment of this population.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 373-378 ◽  
Author(s):  
AI Schafer ◽  
H Takayama ◽  
S Farrell ◽  
MA Jr Gimbrone

Abstract When arachidonic acid metabolism is studied during platelet-endothelial interactions in vitro, the predominant cyclooxygenase end products of each cell type (thromboxane B2 and 6-keto-prostaglandin-F1 alpha, respectively) are essentially completely recovered in the cell-free supernatants of these reactions. In contrast, 50% of 12-hydroxy- 5,8,10,14-eicosatetraenoic acid (12-HETE), the major lipoxygenase metabolite from platelets, is released into the cell-free supernatant. In investigating the basis of this observation, we have found that platelet lipoxygenase metabolites were generated to the same extent during these coincubations but became rapidly incorporated into the endothelial cells. The endothelial cell-associated 12-HETE was present not only as free fatty acid, but was also incorporated into cellular phospholipids and triglycerides. When purified 3H-12-HETE, 3H-5-HETE (the major hydroxy acid lipoxygenase product of leukocytes), and 3H- arachidonic acid (the common precursor of these metabolites) were individually incubated with suspensions of cultured bovine aortic endothelial cells or smooth muscle cells, different patterns of intracellular lipid distribution were found. In endothelial cells, 12- HETE was incorporated equally into phospholipids and triglycerides, whereas 5-HETE was incorporated preferentially into triglycerides, and arachidonic acid was incorporated into phospholipids. In smooth muscle cells, both 12-HETE and 5-HETE showed more extensive incorporation into triglycerides. The rapid and characteristic incorporation and esterification of platelet and leukocyte monohydroxy fatty acid lipoxygenase products by endothelial and smooth muscle cells suggests a possible physiologic role for these processes in regulating vascular function.


2016 ◽  
Vol 231 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Mahendra Prasad Bhatt ◽  
Yeon-Ju Lee ◽  
Se-Hui Jung ◽  
Yong Ho Kim ◽  
Jong Yun Hwang ◽  
...  

C-peptide exerts protective effects against diabetic complications; however, its role in inhibiting hyperglycemic memory (HGM) has not been elucidated. We investigated the beneficial effect of C-peptide on HGM-induced vascular damage in vitro and in vivo using human umbilical vein endothelial cells and diabetic mice. HGM induced apoptosis by persistent generation of intracellular ROS and sustained formation of ONOO− and nitrotyrosine. These HGM-induced intracellular events were normalized by treatment with C-peptide, but not insulin, in endothelial cells. C-peptide also inhibited persistent upregulation of p53 and activation of mitochondrial adaptor p66shc after glucose normalization. Further, C-peptide replacement therapy prevented persistent generation of ROS and ONOO− in the aorta of diabetic mice whose glucose levels were normalized by the administration of insulin. C-peptide, but not insulin, also prevented HGM-induced endothelial apoptosis in the murine diabetic aorta. This study highlights a promising role for C-peptide in preventing HGM-induced intracellular events and diabetic vascular damage.


2002 ◽  
Vol 362 (1) ◽  
pp. 155-164 ◽  
Author(s):  
Oliver POLITZ ◽  
Alexei GRATCHEV ◽  
Peter A. G. McCOURT ◽  
Kai SCHLEDZEWSKI ◽  
Pierre GUILLOT ◽  
...  

MS-1, a high-molecular-mass protein expressed by non-continuous and angiogenic endothelial cells and by alternatively activated macrophages (Mφ2), and the hepatic sinusoidal endothelial hyaluronan clearance receptor are similar with respect to tissue distribution and biochemical characteristics. In the present study we purified these proteins by immuno- and hyaluronan-affinity chromatography respectively, sequenced tryptic peptides and generated full-length cDNA sequences in both mouse and human. The novel genes, i.e. stabilin-1 and stabilin-2, code for homologous transmembrane proteins featuring seven fasciclin-like adhesion domains, 18–20 epidermal-growth-factor domains, one X-link domain and three to six B-(X7)-B hyaluronan-binding motifs. Northern-blotting experiments revealed the presence of both stabilins in organs with predominant endothelial sinuses such as liver, spleen and lymph node: stabilin-1 mRNA was also detected in organs with predominant Mφ2 cells, such as placenta, and in interleukin-4/glucocorticoid-stimulated Mφ2 cells in vitro. A polyclonal antibody made against human recombinant stabilin-1 confirmed the expression of stabilin-1 protein in splenic sinus endothelial cells in vivo and in Mφ2 in vitro. On the basis of high similarity at the protein level and the unique domain composition, which differs from that of all other known fasciclin-like proteins and hyaluronan receptors, stabilin-1 and stabilin-2 define a novel family of fasciclin-like hyaluronan receptor homologues that might play a role in cell—cell and cell—matrix interactions in vascular function and inflammatory processes.


2015 ◽  
Vol 36 (5) ◽  
pp. 1735-1742 ◽  
Author(s):  
Ling Chen ◽  
Jing Zhang ◽  
Zhuo Zhang ◽  
Yaping Chu ◽  
Bing Song ◽  
...  

Background/Aims: The lack of available beta cells greatly limits the use of beta cell transplantation as a therapy for diabetes. Thus, generation of beta cells from other sources is substantially required. Pax4 has been shown to induce reprograming of alpha cells into beta cells during embryogenesis. Nevertheless, whether expression of Pax4 in adult alpha cells could trigger this alpha-to-beta cell reprogramming is unknown. Methods: Here we generated an adeno-associated virus carrying Pax4 and GFP under a CMV promoter (AAV-Pax4). We used AAV-Pax4 to transduce a mouse alpha cell line in vitro, and to transduce primary alpha cells in diabetic mice. Reprogramming was examined by double immunostaining and by changes in beta cell number. The effects on blood glucose were evaluated by fasting blood glucose and glucose response. Results: In vitro, Pax4 overexpression neither induced insulin expression, nor suppressed glucagon expression in alpha cells. In vivo, Pax4 overexpression failed to increase beta cell number, and did not alter hyperglycemia and glucose response in diabetic mice. Conclusion: Pax4 expression is not sufficient to transduce pancreatic alpha cells into beta cells. Overexpression of Pax4 in alpha cells may not increase functional beta cell number in diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document