scholarly journals Blinded by the Light: Artificial Light Lowers Mate Attraction Success in Female Glow-Worms (Lampyris noctiluca L.)

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 734
Author(s):  
Mira Van den Broeck ◽  
Raphaël De Cock ◽  
Stefan Van Dongen ◽  
Erik Matthysen

Nocturnal light pollution from anthropogenic origin is increasing worldwide and is recognised as a major threat for nocturnal biodiversity. We studied the impact of artificial light on the mate attraction success of female common glow-worms (Lampyris noctiluca L.) by daily monitoring their glowing status in the field, acting as a proxy for mating status throughout the mating season. We found that females in dark surroundings typically stopped glowing after one night, indicating that they had mated, while females in illuminated areas glowed for significantly more nights, in some cases up to 15 nights. Our study confirms previous findings and hypotheses that females exposed to artificial light suffer from a reduced mate attraction success with a negative impact on populations.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wouter Halfwerk ◽  
Paul Jerem

Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.


The Condor ◽  
2020 ◽  
Vol 122 (2) ◽  
Author(s):  
Xuebing Zhao ◽  
Min Zhang ◽  
Xianli Che ◽  
Fasheng Zou

Abstract Light pollution is increasing and artificial light sources have great impacts on animals. For migrating birds, collisions caused by artificial light pollution are a significant source of mortality. Laboratory studies have demonstrated that birds have different visual sensitivities to different colors of light, but few field experiments have compared birds’ responses to light of different wavelengths. We used 3 monochromatic lights (red, green, and blue) and polychromatic yellow light to study the impact of wavelength on phototaxis at 2 gathering sites of nocturnally migrating birds in Southwest China. For both sites, short-wavelength blue light caused the strongest phototactic response. In contrast, birds were rarely attracted to long-wavelength red light. The attractive effect of blue light was greatest during nights with fog and headwinds. As rapid urbanization and industrialization cause an increase in artificial light, we suggest that switching to longer wavelength lights is a convenient and economically effective way to reduce bird collisions.


2020 ◽  
Vol 12 (20) ◽  
pp. 3412
Author(s):  
Andreas Jechow ◽  
Franz Hölker

Artificial skyglow, the brightening of the night sky by artificial light at night that is scattered back to Earth within the atmosphere, is detrimental to astronomical observations and has an impact on ecosystems as a form of light pollution. In this work, we investigated the impact of the lockdown caused by the COVID-19 pandemic on the urban skyglow of Berlin, Germany. We compared night sky brightness and correlated color temperature (CCT) measurements obtained with all-sky cameras during the COVID-19 lockdown in March 2020 with data from March 2017. Under normal conditions, we expected an increase in night sky brightness (or skyglow, respectively) and CCT because of the transition to LED. This is supported by a measured CCT shift to slightly higher values and a time series analysis of night-time light satellite data showing an increase in artificial light emission in Berlin. However, contrary to this observation, we measured a decrease in artificial skyglow at zenith by 20% at the city center and by more than 50% at 58 km distance from the center during the lockdown. We assume that the main cause for the reduction of artificial skyglow originates from improved air quality due to less air and road traffic, which is supported by statistical data and satellite image analysis. To our knowledge, this is the first reported impact of COVID-19 on artificial skyglow and we conclude that air pollution should shift more into the focus of light pollution research.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140129 ◽  
Author(s):  
Kamiel Spoelstra ◽  
Roy H. A. van Grunsven ◽  
Maurice Donners ◽  
Phillip Gienapp ◽  
Martinus E. Huigens ◽  
...  

Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Christina Elgert ◽  
Topi K. Lehtonen ◽  
Arja Kaitala ◽  
Ulrika Candolin

Abstract Artificial light at night is increasing globally, interfering with both sensory ecology and temporal rhythms of organisms, from zooplankton to mammals. This interference can change the behaviour of the affected organisms, and hence compromise the viability of their populations. Limiting the use of artificial light may mitigate these negative effects. Accordingly, we investigated whether the duration of artificial light affects sexual signalling in female glow-worms, Lampyris noctiluca, which are flightless and attract flying males to mate by emitting glow that is interfered by light pollution. The study included three treatments: no artificial light (control), 15 min of artificial light, and 45 min of artificial light. The results show that females were more likely to cease glowing when the exposure to light was longer. Furthermore, small females were more likely to cease their glow, and responded faster to the light, than larger females. These findings suggest that glow-worms can react rapidly to anthropogenic changes in nocturnal light levels, and that prolonged periods of artificial light trigger females to stop sexual signalling. Thus, limiting the duration of artificial light can mitigate the adverse effects of light pollution on sexual signalling, highlighting the importance of such mitigation measures. Significance statement Interest in the effects of artificial light at night on animal behaviour has increased in recent years. With evidence for its negative impact accumulating, potential remedies, such as limiting the duration of light exposure, have emerged. To date, however, knowledge on the effectiveness of these methods has remained very limited. We show that female European common glow-worms, which are wingless beetles that glow to attract flying males to mate, responded to prolonged artificial light exposure by discontinuing their glow. Such non-glowing females are not expected to find a mate, making it difficult for them to reproduce. Hence, our study indicates that the duration of artificial light should be limited to protect this night-active beetle and its opportunities for effective sexual signalling. Because many other nocturnal species also need darkness, this study provides valuable information for the development and use of less disruptive night-time lights.


2017 ◽  
Vol 19 (1) ◽  
pp. 10-14
Author(s):  
Nur Nafhatun Md Shariff ◽  
Zety Sharizat Hamidi ◽  
Muhamad Syazwan Faid

Muslims has differentiated between new moon and Islamic new moon (hilal). The determination of first day of months based on visibility of Islamic new moon (hilal) i.e. sightings of the first sliver of the waxing moon marking the start of each month. One major issue that has affected hilal visibility for many years is misdirected, excessive and obtrusive artificial light. The objective of this research is to study the impact of light pollution on the visibility of hilal. The data were taken using Sky Quality Meter (SQM) which records the visual magnitudes per square arcsecond (mpsas) to measure sky limiting magnitude. Result showed that reading between 16-22 mpsas, the chances to witness hilal is high. Any lower than 16mpsas, the hilal is not visible. The main result of this research is to find out a vital parameter of hilal observations which leads to propose a new criterion i.e. sky limiting magnitude.


2020 ◽  
Author(s):  
Kai Pong Tong ◽  
Zoltán Kolláth

<p>Artificial light at night (ALAN) has become a major concern in recent years due to its impact on the health of human beings and the ecosystems. As a result, there is a surge of light pollution research not only on night sky brightness, but also on assessments of impacts on both ecology and society.</p><p>We have set up an interdisciplinary project in Hungary since September 2017, to not only study the impacts of change in lighting technology on patterns of ALAN (with emphasis on the areas within and around national parks in Hungary), but also facilitate national and international cooperations in light pollution research. We refer to this project as Living Environmental Laboratory for Lighting (LELL). Specifically, the project covers the following areas:</p><p><strong>1. Development of new techniques for night sky radiometry and spectrometry</strong><br>We are developing techniques for night sky multispectral measurements using commercially available cameras with interchangeable lens, calibrated by high sensitivity spectroradiometer, in order to quantify night sky condition and identify sources of artificial light at high resolution not achieveable by systems based on panchromatic sensors or fisheye lenses. In addition, we will compare the results from our ground-based measurements with satellite-based observations.</p><p><strong>2. Modeling of night sky patterns in national parks of Hungary</strong><br>We have developed a Monte-Carlo method of modeling light pollution, which can also be used for investigating effects of aerosols and clouds on the propagation of artificial light.</p><p><strong>3. Impact assessments of ALAN through measurements</strong><br>The public lighting was remodeled to LED-based systems in two areas close to national parks, one of which in the Zselic region in Southwestern Hungary, and another in Bükk in Northern Hungary. Using the techniques above, we are monitoring the change in night sky brightness and color, as well as the impact on flora and fauna.</p><p><strong>4. Recommendations on future assessments and mitigations of</strong> <strong>light pollution</strong><br>With our experience gain within the duration of this project, we will inform the light pollution research community of standardizing methodologies for monitoring light pollution, as well as giving recommendations for managing public lighting assets to reduce the impacts of light pollution.</p><p><br><strong>Acknowledgement</strong><br>This project is supported by the European Union and co-financed by the<br>European Social Fund (Grant no. EFOP–3.6.2–16–201–00014: Development of<br>international research environment for light pollution studies)</p>


2018 ◽  
Vol 14 (1) ◽  
pp. 33-36 ◽  
Author(s):  
MG Carta ◽  
A Preti ◽  
HS Akiskal

Human population is increasing in immense cities with millions of inhabitants, in which life is expected to run 24 hours a day for seven days a week (24/7). Noise and light pollution are the most reported consequences, with a profound impact on sleep patterns and circadian biorhythms. Disruption of sleep and biorhythms has severe consequences on many metabolic pathways. Suppression of melatonin incretion at night and the subsequent effect on DNA methylation may increase the risk of prostate and breast cancer. A negative impact of light pollution on neurosteroids may also affect mood. People who carry the genetic risk of bipolar disorder may be at greater risk of full-blown bipolar disorder because of the impact of noise and light pollution on sleep patterns and circadian biorhythms. However, living in cities may also offers opportunities and might be selective for people with hyperthymic temperament, who may find themselves advantaged by increased energy prompted by increased stimulation produced by life in big cities. This might result in the spreading of the genetic risk of bipolar disorder in the coming decades. In this perspective the burden of poor quality of life, increased disability adjusted life years and premature mortality due to the increases of mood disorders is the negative side of a phenomenon that in its globality also shows adaptive aspects. The new lifestyle also influences those who adapt and show behaviors, reactions and responses that might resemble the disorder, but are on the adaptive side.


2015 ◽  
Vol 26 (3-4) ◽  
pp. 116-123
Author(s):  
A. P. Korzh ◽  
T. V. Zahovalko

Recently, the number of published works devoted to the processes of synanthropization of fauna, is growing like an avalanche, which indicates the extreme urgency of this theme. In our view, the process of forming devices to coexist with human and the results of his life reflects the general tandency of the modern nature evolution. Urbanization is characteristic for such a specific group of animals like amphibians, the evidence of which are numerous literature data. Many researchers use this group to assess the bioindicative quality of the environment. For this aim a variety of indicators are used: from the cellular level of life of organization up to the species composition of the group in different territories. At the same time, the interpretation of the results is not always comparable for different areas and often have significantly different interpretations by experts. Urban environment, primarily due to the contamination is extremely aggressive to amphibians. As a consequence, the urban populations of amphibians may be a change in the demographic structure, affecting the reproductive ability of the population, the disappearance of the most sensitive species or individuals, resizing animals, the appearance of abnormalities in the development, etc. At the same time play an important amphibians in the ecosystems of cities, and some species in these conditions even feel relatively comfortable. Therefore, it is interesting to understand the mechanisms of self-sustaining populations of amphibians in urban environments. To assess the impact of natural and anthropogenic factors on the development of amphibian populations were used cognitive modeling using the program Vensim PLE. Cognitive map of the model for urban and suburban habitat conditions were the same. The differences concerned the strength of connections between individual factors (migration, fertility, pollution) and their orientation. In general, factors like pollution, parasites, predators had negative impact on the population, reducing its number. The birth rate, food and migration contributed to raising number of individuals. Some of the factors affected on the strength to of each other as well: the majority of the factors affected the structure of the population, had an influence on the fertility. Thanks to it the model reflects the additive effect of complex of factors on the subsequent status of the population. Proposed and analyzed four scenarios differing strength and duration of exposure. In the first scenario, a one-time contamination occurs and not subsequently repeated. The second and third scenario assumes half board contamination, 1 year (2 scenario) and two years (scenario 3). In the fourth scenario, the pollution affected the population of amphibians constantly. In accordance with the results of simulation, much weaker than the natural populations respond to pollution - have them as an intensive population growth and its disappearance at constant pollution is slow. Changes to other parameters of the model showed that this pollution is the decisive factor -only the constant action leads to a lethal outcome for the populations. All other components of the model have a corrective effect on the population dynamics, without changing its underlying trand. In urban areas due to the heavy impact of pollution maintaining the population is only possible thanks to the migration process – the constant replenishment of diminishing micropopulations of natural reserves. This confirms the assumption that the form of existence metapopulations lake frog in the city. In order to maintain the number of amphibians in urban areas at a high level it is necessary to maintain existing migration routes and the creation of new ones. Insular nature of the placement of suitable habitats in urban areas causes the metapopulation structure of the types of urbanists. Therefore, the process of urbanization is much easier for those species whicht are capable of migration in conditions of city. In the initial stages of settling the city micropopulationis formed by selective mortality of the most susceptible individuals to adverse effects. In future, maintaining the categories of individuals is provided mainly due to migration processes metapopulisation form of the species of existence is supported). It should be noted that the changes in the previous levels are always saved in future. In the case of reorganizations of individuals we of morphology can assume the existence of extremely adverse environmental conditions that threaten the extinction of the micropopulations. 


2020 ◽  
Vol 8 (3) ◽  
pp. 3-17
Author(s):  
Elena Blagoeva

The impact of the last global economic crisis (2008) on the European economy put a strain on higher education (HE), yet it also pushed the sector towards intensive reforms and improvements. This paper focuses on the “Strategy for the Development of Higher Education in the Republic of Bulgaria 2014-2020”. With a case study methodology, we explore the strategic endeavours of the Bulgarian government to comply with the European directions and to secure sustainable growth for the HE sector. Our research question is ‘How capable is the Bulgarian HE Strategy to overcome the economic and systemic restraints of Bulgarian higher education?’. Because the development of strategies for HE within the EU is highly contextual, a single qualitative case study was chosen as the research approach. HE institutions are not ivory towers, but subjects to a variety of external and internal forces. Within the EU, this is obviated by the fact that Universities obtain their funds from institutions such as governments, students and their families, donors, as well as EU-level programmes. Therefore, to explore how these pressures interact to affect strategic action on national level, the case method is well suited as it enabled us to study the phenomena thoroughly and deeply. The paper suggests the actions proposed within the Strategy have the potential to overcome the delay, the regional isolation and the negative impact of the economic crisis on the country. Nevertheless, the key elements on which the success or failure of this Strategy hinges are the control mechanisms and the approach to implementation. Shortcomings in these two aspects of strategic actions in HE seem to mark the difference between gaining long-term benefits and merely saving face in front of international institutions.


Sign in / Sign up

Export Citation Format

Share Document