scholarly journals Hemolymph Ecdysteroid Titer Affects Maternal mRNAs during Bombyx mori Oogenesis

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 969
Author(s):  
Meirong Zhang ◽  
Pingzhen Xu ◽  
Tao Chen

Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori.

2019 ◽  
Vol 80 (1) ◽  
Author(s):  
Md Saheb Ali ◽  
Birendra Mishra ◽  
Ahsanul Haque Swapon ◽  
Masamitsu Yamaguchi

Abstract Background We classified cuticular protein genes expressed at prepupal stage in wing discs of Bombyx mori into six groups according to their developmental expression and ecdysone responsiveness. Their expression pattern is suggested to be regulated by ecdysone-responsive transcription factors, whose transcripts showed resemblance with those of cuticular protein gene expression. Result Group1 and Group2 CP genes showed peak expression at stage W2. Group3 CP genes showed high expression at stage W3E and W3L and were upregulated by 20E addition, showing a peak 12 h after 20E pulse treatment. Group4 CP gene transcripts started expression from stage V5 and peaked at stage W3L. Some genes showed significant increase 4 or 6 h after 20E addition and were induced 6 h and showed a peak 18 h after the 20E pulse treatment. Group5 CP gene transcripts peaked at the same stage W3L. Some Group5 genes showed significant increase 6 h after the 20E addition, while others were not induced by the 20E addition. These different sub-groups showed different expression profiles in the feeding stage. Transcripts of this group genes were induced 12 h and showed a peak 18 h after the 20E pulse treatment. Group6 CP genes peaked at the stage P0, were not induced by the 20E addition, and showed a peak 24 h after the 20E pulse treatment. Group3, 4, 5, and 6 CP genes are suggested to be regulated by BHR4, BR-C, E74A, and βFTZ-F1, respectively. ERTFs showed different responsiveness to 20E concentration. BR-C was most and E74A was least insensitive. The addition of cycloheximide inhibited BR-C, E74A, and βFTZ-F1 expression depending on the length of treatment after ecdysone pulse treatment, which suggests that BHR4 induced BR-C, E74A, and βFTZ-F1. Conclusion Expression patterns of CPs were determined by the ecdysone-responsiveness and the related ERTFs expressed in the prepupal stage in B. mori wing discs.


2020 ◽  
Author(s):  
Song Guo ◽  
Haiyang Hu ◽  
Chuan Xu ◽  
Naoki Irie ◽  
Philipp Khaitovich

AbstractThe relationship between embryonic development and evolution historically investigated based on embryo morphology, could now be reassessed using mRNA expression endophenotype. Here, we investigated the applicability of von Baer’s and Haeckel’s arguments at mRNA expression level by comparing the developmental changes among nine evolutionarily distinct species: from oyster to mouse. In agreement with models based on von Baer’s postulates, up to 36% of mRNA expression indicated nearly linear conservation of species’ developmental programs. By contrast, 5-15% of developmental expression profiles, enriched in neural genes, displayed an alignment pattern compatible with the terminal edition paradigm proposed by Haeckel. Thus, the development-evolution relationship based on mRNA expression agrees with early concepts based on embryo morphology and demonstrates that the corresponding patterns coexist in chordate development.


Reproduction ◽  
2012 ◽  
Vol 144 (5) ◽  
pp. 569-582 ◽  
Author(s):  
Lisa Shaw ◽  
Sharon F Sneddon ◽  
Daniel R Brison ◽  
Susan J Kimber

Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.


2006 ◽  
Vol 131 (1) ◽  
pp. 118-121 ◽  
Author(s):  
Wang Yong ◽  
Lu Wangjin ◽  
Li Jianguo ◽  
Jiang Yueming

To understand the relationship between fruit cracking and gene expression patterns, we identified two expansin genes from litchi (Litchi chinensis Sonn.) fruit and then examined their expression profiles in pericarp and aril at different stages of fruit development, using the cracking-resistant cultivar Huaizhi and the cracking-susceptible cultivar Nuomici. Two full-length cDNAs of 1087 and 1010 base pairs encoding expansin, named LcExp1 and LcExp2, were isolated from expanding fruit using RT-PCR and RACE-PCR (rapid amplification of cDNA ends) methods. LcExp1 mRNA could be detected from the early stage of fruit rapid growth (59 days after anthesis). The LcExp1 mRNA increased and reached to the highest level at the end of growth phase (80 days after anthesis) in pericarp of `Huaizhi', while the mRNA could be detected at the stage of rapid fruit growth, then increased slightly and finally kept remained almost constant in the pericarp of `Nuomici'. Similar accumulation of LcExp2 mRNA was observed in fruit aril of `Nuomici' and `Huaizhi', whereas LcExp2 accumulated only in pericarp of `Huaizhi' but did not appear in pericarp of `Nuomici'. The results indicate that expression of two expansin genes in litchi pericarp are closely associated with fruit growth and cracking.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Davide Perruzza ◽  
Nicola Bernabò ◽  
Cinzia Rapino ◽  
Luca Valbonetti ◽  
Ilaria Falanga ◽  
...  

The relationship between varicocele and fertility has always been a matter of debate because of the absence of predictive clinical indicators or molecular markers able to define the severity of this disease. Even though accumulated evidence demonstrated that the endocannabinoid system (ECS) plays a central role in male reproductive biology, particularly in the testicular compartment, to date no data point to a role for ECS in the etiopathogenesis of varicocele. Therefore, the present research has been designed to investigate the relationship between testicular ECS gene expression and fertility, using a validated animal model of experimental varicocele (VAR), taking advantage of traditional statistical approaches and artificial neural network (ANN). Experimental induction of VAR led to a clear reduction of spermatogenesis in left testes ranging from a mild (Johnsen score 7: 21%) to a severe (Johnsen score 4: 58%) damage of the germinal epithelium. However, the mean number of new-borns recorded after two sequential matings was quite variable and independent of the Johnsen score. While the gene expression of biosynthetic and degrading enzymes of AEA (NAPE-PLD and FAAH, respectively) and of 2-AG (DAGLα and MAGL, respectively), as well as their binding cannabinoid receptors (CB1 and CB2), did not change between testes and among groups, a significant downregulation of vanilloid (TRPV1) expression was recorded in left testes of VAR rats and positively correlated with animal fertility. Interestingly, an ANN trained by inserting the left and right testicular ECS gene expression profiles (inputs) was able to predict varicocele impact on male fertility in terms of mean number of new-borns delivered (outputs), with a very high accuracy (average prediction error of 1%). The present study provides unprecedented information on testicular ECS gene expression patterns during varicocele, by developing a freely available predictive ANN model that may open new perspectives in the diagnosis of varicocele-associated infertility.


Parasitology ◽  
2004 ◽  
Vol 130 (1) ◽  
pp. 67-77 ◽  
Author(s):  
M. L. M. ROBIJN ◽  
M. WUHRER ◽  
D. KORNELIS ◽  
A. M. DEELDER ◽  
R. GEYER ◽  
...  

The developmental expression of the antigenic fucosylated glycan motifs Fucα1-3GalNAcβ1-4GlcNAc (F-LDN), Fucα1-3GalNAcβ1-4(Fucα1-3)GlcNAc (F-LDN-F), GalNAcβ1-4(Fucα1-3)GlcNAc (LDN-F), Galβ1-4(Fucα1-3)GlcNAc (Lewis X), and GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAc (LDN-DF) inSchistosoma mansonicercariae, adult worms and eggs, was surveyed using previously defined anti-carbohydrate monoclonal antibodies (mAbs). Lewis X was found both on glycolipids and glycoproteins, yet with completely different expression patterns during the life-cycle: on glycolipids, Lewis X was mainly found in the cercarial stage, while protein-conjugated Lewis X was mainly present in the egg stage. Also protein-conjugated LDN-F and LDN-DF were most highly expressed in the egg-stage. On glycolipids LDN-DF was found in all three examined stages, whereas LDN-F containing glycolipids were restricted to adult worms and eggs. The motifs F-LDN and F-LDN-F were found both on glycoproteins and glycolipids of the cercarial and egg stage, while in the adult stage, they appeared to occur predominantly on glycolipids. Immunofluorescence assays (IFA) showed that these F-LDN and F-LDN-F containing glycolipids were localized in a yet undefined duct or excretory system of adult worms. Murine infection serum showed major reactivity with this adult worm duct-system, which could be fully inhibited by pre-incubation with keyhole limpet haemocyanin (KLH). Clearly, the use of defined mAbs provides a quick and convenient way to map expression profiles of carbohydrate epitopes.


2021 ◽  
Author(s):  
Song Guo ◽  
Haiyang Hu ◽  
Chuan Xu ◽  
Naoki Irie ◽  
Philipp Khaitovich

Abstract The relationship between embryonic development and evolution historically investigated based on embryo morphology could now be reassessed using mRNA expression endophenotype. Here, we analyzed the conservation of divergence of the developmental mRNA expression profiles in nine evolutionarily distinct species, from oyster to mouse, and compared them to the original concepts formulated by von Baer and Haeckel. We find nearly linear conservation of species’ developmental programs among these species, compatible with models rooted on von Baer’s postulates, for approximately a third of expressed orthologous genes. By contrast, 5-15% of developmental expression profiles, enriched in neural genes, displayed an alignment pattern compatible with the terminal edition paradigm proposed by Haeckel. Thus, the development-evolution relationship based on mRNA expression agrees with early concepts based on embryo morphology and demonstrates that the corresponding patterns coexist in chordate development.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1774 ◽  
Author(s):  
Justyna Strycharz ◽  
Ewa Świderska ◽  
Adam Wróblewski ◽  
Marta Podolska ◽  
Piotr Czarny ◽  
...  

microRNAs are increasingly analyzed in adipogenesis, whose deregulation, especially visceral, contributes to the development of diabetes. Hyperglycemia is known to affect cells while occurring acutely and chronically. Therefore, we aimed to evaluate the effect of hyperglycemia on human visceral pre/adipocytes from the perspective of microRNAs. The relative expression of 78 microRNAs was determined by TaqMan Low Density Arrays at three stages of HPA-v adipogenesis conducted under normoglycemia, chronic, and intermittent hyperglycemia (30 mM). Hierarchical clustering/Pearson correlation revealed the relationship between various microRNAs’ expression profiles, while functional analysis identified the genes and signaling pathways regulated by differentially expressed microRNAs. Hyperglycemia affected microRNAs’ expression patterns during adipogenesis, and at the stage of pre-adipocytes, differentiated and matured adipocytes compared to normoglycemia. Interestingly, the changes that were evoked upon hyperglycemic exposure during one adipogenesis stage resembled those observed upon chronic hyperglycemia. At least 15 microRNAs were modulated during normoglycemic and/or hyperglycemic adipogenesis and/or upon intermittent/chronic hyperglycemia. Bioinformatics analysis revealed the involvement of these microRNAs in cell cycles, lipid metabolism, ECM–receptor interaction, oxidative stress, signaling of insulin, MAPK, TGF-β, p53, and more. The obtained data suggests that visceral pre/adipocytes exposed to chronic/intermittent hyperglycemia develop a microRNAs’ expression pattern, which may contribute to further visceral dysfunction, the progression of diabetic phenotype, and diabetic complications possibly involving “epi”-memory.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1065
Author(s):  
Xiaolong Ji ◽  
Jing Ren ◽  
Shaoyu Lang ◽  
Di Wang ◽  
Liwei Zhu ◽  
...  

Coloring is an important appearance quality of fruit. In order to evaluate the relationship between metabolites and fruit color, we analyzed the metabolites and transcriptional profiles of two different Cerasus humilis cultivars: “RF” (cv. Zhangwu, red fruit) and “YF” (cv. Nongda No.5, yellow fruit). The results of identification and quantification of metabolites showed that there were significant differences in the contents of 11 metabolites between RF and YF. Transcriptomics was used to analyze the expression patterns of genes related to the anthocyanin biosynthesis pathway, and subsequently, the regulation network of anthocyanin biosynthesis was established to explore their relationship with color formation. QRT-PCR, performed for 12 key genes, showed that the expression profiles of the differentially expressed genes were consistent with the results of the transcriptome data. A co-expression analysis revealed that the late genes were significantly positively correlated with most of the different metabolites. The results of the study provide a new reference for improving the fruit color of Cerasus humilis in the future.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


Sign in / Sign up

Export Citation Format

Share Document