scholarly journals A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers

Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Roman Berner ◽  
Alan Bross ◽  
Yifan Chen ◽  
...  

We develop a novel Time Projection Chamber (TPC) concept suitable for deployment in kilotonne-scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks while increasing the coverage of the light-collection system and maximizing the active volume. This novel concept could be used as a far detector module in the Deep Underground Neutrino Experiment (DUNE). For the charge-readout system, we used the charge-collection pixels and associated application-specific integrated circuits currently being developed for the liquid argon (LAr) component of the DUNE Near Detector design, ArgonCube. In addition, we divided the TPC into a number of shorter drift volumes, reducing the total voltage used to drift the ionization electrons, and minimizing the stored energy per TPC. Segmenting the TPC also contains scintillation light, allowing for precise trigger localization and a more expansive light-readout system. Furthermore, the design opens the possibility of replacing or upgrading components. These augmentations could substantially improve the reliability and the sensitivity, particularly for low-energy signals, in comparison to traditional monolithic LArTPCs with projective-wire charge readouts.

2022 ◽  
Vol 17 (01) ◽  
pp. P01005
Author(s):  
A. Abed Abud ◽  
B. Abi ◽  
R. Acciarri ◽  
M.A. Acero ◽  
M.R. Adames ◽  
...  

Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
B. Abi ◽  
R. Acciarri ◽  
M. A. Acero ◽  
G. Adamov ◽  
D. Adams ◽  
...  

AbstractThe deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the $$\nu _e$$ ν e spectral parameters of the neutrino burst will be considered.


2019 ◽  
Vol 214 ◽  
pp. 01025
Author(s):  
K.V. Tsang ◽  
M. Convery ◽  
M. Graham ◽  
R. Herbst ◽  
J. Russell

The ProtoDUNE-SP is a single-phase liquid argon time projection chamber (LArTPC) prototype for the Deep Underground Neutrino Experiment (DUNE). Signals from 15,360 electronic channels are received by 60 Reconfigurable Cluster Elements (RCEs), which are processing elements designed at SLAC for a wide range of applications and are based upon the “system-onchip” Xilinx Zynq family of FPGAs. The RCEs are housed in industry-standard ATCA shelves on a custom blade, called the Cluster on Board (COB). The RCE platform and its processing functions for the ProtoDUNE-SP will be presented.


2019 ◽  
Author(s):  
Alessandra Tonazzo

The Deep Underground Neutrino Experiment (DUNE) is a next-generation underground observatory, to be located in the USA, aiming at precise measurements of long-baseline neutrino oscillations over a 1300 km baseline, detection of supernova neutrinos and search for nucleon decay and other physics beyond the Standard Model. The far detector, a very large liquid argon time projection chamber, requires a dedicated prototyping effort (ProtoDUNE), currently ongoing at CERN.


2022 ◽  
Vol 17 (01) ◽  
pp. C01012
Author(s):  
I. Gil‐Botella

Abstract The Deep Underground Neutrino Experiment (DUNE) is a leading-edge experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE-Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) operated at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE far detector. In ProtoDUNE-DP, the scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, we present the performance of the ProtoDUNE-DP photon detection system, comparing different wavelength-shifting techniques and the use of xenon-doped LAr as a promising option for future large LArTPCs. The scintillation light production and propagation processes are analyzed and compared to simulations, improving understanding of the liquid argon properties.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Diego Garcia-Gamez ◽  
Patrick Green ◽  
Andrzej M. Szelc

AbstractLiquid argon is being employed as a detector medium in neutrino physics and Dark Matter searches. A recent push to expand the applications of scintillation light in Liquid Argon Time Projection Chamber neutrino detectors has necessitated the development of advanced methods of simulating this light. The presently available methods tend to be prohibitively slow or imprecise due to the combination of detector size and the amount of energy deposited by neutrino beam interactions. In this work we present a semi-analytical model to predict the quantity of argon scintillation light observed by a light detector with a precision better than $$10\%$$ 10 % , based only on the relative positions between the scintillation and light detector. We also provide a method to predict the distribution of arrival times of these photons accounting for propagation effects. Additionally, we present an equivalent model to predict the number of photons and their arrival times in the case of a wavelength-shifting, highly-reflective layer being present on the detector cathode. Our proposed method can be used to simulate light propagation in large-scale liquid argon detectors such as DUNE or SBND, and could also be applied to other detector mediums such as liquid xenon or xenon-doped liquid argon.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Maury Goodman

The Deep Underground Neutrino Experiment (DUNE) is a worldwide effort to construct a next-generation long-baseline neutrino experiment based at the Fermi National Accelerator Laboratory. It is a merger of previous efforts and other interested parties to build, operate, and exploit a staged 40 kt liquid argon detector at the Sanford Underground Research Facility 1300 km from Fermilab, and a high precision near detector, exposed to a 1.2 MW, tunableνbeam produced by the PIP-II upgrade by 2024, evolving to a power of 2.3 MW by 2030. The neutrino oscillation physics goals and the status of the collaboration and project are summarized in this paper.


Instruments ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 28 ◽  
Author(s):  
Roman Berner ◽  
Yifan Chen ◽  
Antonio Ereditato ◽  
Patrick P. Koller ◽  
Igor Kreslo ◽  
...  

We present a new technology for the shaping of the electric field in Time Projection Chambers (TPCs) using a carbon-loaded polyimide foil. This technology allows for the minimisation of passive material near the active volume of the TPC and, thus, is capable to reduce background events originating from radioactive decays or scattering on the material itself. Furthermore, the high and continuous electric resistivity of the foil limits the power dissipation per unit area and minimizes the risks of damages in the case of an electric field breakdown. Replacing the conventional field cage with a resistive plastic film structure called “shell” decreases the number of components within the TPC and, therefore, reduces the potential points of failure when operating the detector. A prototype liquid argon (LAr) TPC with such a resistive shell and with a cathode made of the same material was successfully tested for long-term operation with electric field values up to 1.6 k V cm − 1 . The experiment shows that it is feasible to successfully produce and shape the electric field in liquefied noble-gas detectors with this new technology.


2017 ◽  
Vol 12 (03) ◽  
pp. C03007-C03007 ◽  
Author(s):  
T. Cervi ◽  
M.E. Babicz ◽  
M. Bonesini ◽  
A. Falcone ◽  
U. Kose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document