scholarly journals Inhibition of NADPH Oxidase 4 (NOX4) Signaling Attenuates Tuberculous Pleural Fibrosis

2019 ◽  
Vol 8 (1) ◽  
pp. 116 ◽  
Author(s):  
Youngmi Kim ◽  
So Park ◽  
Harry Jung ◽  
You Noh ◽  
Jae Lee ◽  
...  

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [NOX] enzymes serve several hemostatic and host defense functions in various lung diseases, but the role of NOX4 signaling in tuberculous pleurisy is not well understood. The role of NOX4 signaling in tuberculous pleural fibrosis was studied using invitro pleural mesothelial cell (PMC) experiments and a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. The production of NOX4 reactive oxygen species (NOX4–ROS) and the epithelial mesenchymal transition (EMT) in PMCs were both induced by heat-killed mycobacterium tuberculosis (HKMT). In cultured PMCs, HKMT-induced collagen-1 synthesis and EMT were blocked by pretreatment with small interfering RNA (siRNA) NOX4. Moreover, NOX4–ROS production and subsequent fibrosis were reduced by treatment with losartan and the toll-like receptor 4 (TLR4) inhibitor TAK-242. The HKMT-induced EMT and intracellular ROS production were mediated by NOX4 via the activation of extracellular signal-regulated kinase (ERK) signaling. Finally, in a BCG-induced pleurisy model, recruitment of inflammatory pleural cells, release of inflammatory cytokines, and thickened mesothelial fibrosis were attenuated by SiNOX4 compared to SiCon. Our study identified that HKMT-induced pleural fibrosis is mediated by NOX4–ERK–ROS via TLR4 and Angiotensin II receptor type1 (AT1R). There results suggest that NOX4 may be a novel therapeutic target for intervention in tuberculous pleural fibrosis.

2020 ◽  
Author(s):  
Zhongmin Sun ◽  
Ning Qian ◽  
Hong Li ◽  
Tinghua Hu ◽  
Ling Tang ◽  
...  

Abstract Pleural fibrosis is an irreversible pathological process occurred in the development of several lung diseases. TMEM88 is a member of transmembrane (TMEM) family and has been found to be involved in the regulation of fibrogenesis. However, the role of TMEM88 in pleural fibrosis remains unknown. In this study, we aimed to explore the role of TMEM88 in pleural fibrosis in vitro using TGF-β1-induced human pleural mesothelial cell line MeT-5A cells. Our results showed that the expression levels of TMEM88 were downregulated in pleural fibrosis tissues and TGF-β1-treated Met-5A cells. Overexpression of TMEM88 inhibited the proliferation of Met-5A cells under TGF-β1 stimulation. In addition, TMEM88 overexpression prevented TGF-β1-induced extracellular matrix (ECM) accumulation and epithelial-mesenchymal transition (EMT) in Met-5A cells with decreased expression levels of Col I and fibronectin, increased levels of cytokeratin-8 and E-cadherin, as well as decreased levels of vimentin and α-SMA. Furthermore, overexpression of TMEM88 inhibited the expression of TGF-β receptor I (TβRI) and TβRII and suppressed the phosphorylation of Smad2 and Smad3 in Met-5A cells. In conclusion, these results indicated that TMEM88 exhibited an anti-fibrotic activity in pleural fibrosis via inhibiting the activation of TGF-β1/Smad signaling pathway.


2017 ◽  
Vol 44 (5) ◽  
pp. 1856-1868 ◽  
Author(s):  
Zhikui Liu ◽  
Kangsheng Tu ◽  
Yufeng Wang ◽  
Bowen Yao ◽  
Qing Li ◽  
...  

Background/Aims: Hypoxic microenvironment, a common feature of hepatocellular carcinoma (HCC), can induce HIF-1α expression and promote the epithelial-mesenchymal transition (EMT) and invasion of cancer cells. However, the underlying molecular mechanisms have not fully elucidated. Methods: HCC cells were cultured under controlled hypoxia conditions or normoxic conditions. Transwell assays were used to examine the migration and invasion capacity. HIF-1α siRNA, cyclopamine (a SMO antagonist) and GLI1 siRNA were used to inhibit HIF-1α transcription or Hh signaling activation. Results: In present study, we first observed a strongly positive correlation between HIF-1α and GLI1 expression in HCC tissues. Then, we showed that hypoxia significantly promoted EMT process and invasion of HCC cells, associated with activating the non-canonical Hh pathway without affecting SHH and PTCH1 expression. HIF-1α knockdown mitigated hypoxia-induced SMO and GLI1 expression, EMT invasion of HCC cells. Moreover, the SMO inhibitor or GLI1 siRNA also reversed the hypoxia-driven EMT and invasion of HCC cells under hypoxia condition. Here, we show that non-canonical Hh signaling is required as an important role to switch on hypoxia-induced EMT and invasion in HCC cells. In addition, we found that hypoxia increased ROS production and that ROS inhibitors (NAC) blocked GLI1-dependent EMT process and invasion under hypoxic conditions. To determine a major route of ROS production, we tested whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is involved in hypoxia-induced ROS production. NOX4 expression was found to be increased at both mRNA and protein levels in hypoxic HCC cells. Furthermore, siRNA-mediated knockdown of NOX4 expression abolished hypoxia induced ROS generation and GLI1-dependent activation and invasion of HCC cells. Conclusion: Our findings indicate that hypoxia triggers ROS-mediated GLI1-dependent EMT progress and invasion of HCC cells through induction of NOX4 expression. Thus, hypoxia-driven ROS mediated non-canonical Hh signaling may play an important role in the initiation of EMT and provides a potential marker for cancer prevention and treatment.


2015 ◽  
Vol 35 (1) ◽  
pp. 14-25 ◽  
Author(s):  
Yu Liu ◽  
Zheng Dong ◽  
Hong Liu ◽  
Jiefu Zhu ◽  
Fuyou Liu ◽  
...  

Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.


2017 ◽  
Vol 66 (2) ◽  
pp. 334-339 ◽  
Author(s):  
Qian Ning ◽  
Feiyan Li ◽  
Lei Wang ◽  
Hong Li ◽  
Yan Yao ◽  
...  

Pleural fibrosis can dramatically lower the quality of life. Numerous studies have reported that epithelial–mesenchymal transition (EMT) regulated by transforming growth factor-β (TGF-β) is involved in fibrosis. However, the molecular mechanism is inadequately understood. Fibroblast-specific protein-1 (S100A4) is a target of TGF-β signaling. In our previous study, we have reported that S100A4 is highly expressed in pleural fibrosis. Thus, we suggest that S100A4 took part in the TGF-β-induced EMT in pleural fibrosis. In this study, we determined the expression of S100A4 and EMT-related markers in Met-5A cells (pleural mesothelial cells) treated with TGF-β or TGF-β inhibitor by real-time PCR and western blot. In order to explore the role of S100A4, we used siRNA to knock down the expression of S100A4 in cell model. We found that the expression of epithelial cell marker was decreased and the mesenchymal cell marker increased with S100A4 upregulation after treatment with TGF-β. Moreover, the changes of EMT-related event were restricted when the expression of S100A4 was knocked down. Conversely, S100A4 can partially rescue the EMT-related expression changes induced by TGF-β inhibitor. These findings suggest that S100A4 expression is induced by the TGF-β pathway, and silencing S100A4 expression can inhibit the process of TGF-β-induced EMT.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


2020 ◽  
Vol 20 ◽  
Author(s):  
Qionghui Wu ◽  
Haidong Wei ◽  
Wenbo Meng ◽  
Xiaodong Xie ◽  
Zhenchang Zhang ◽  
...  

: Annexin, a calcium-dependent phospholipid binding protein, can affect tumor cell adhesion, proliferation, apoptosis, invasion and metastasis, as well as tumor neovascularization in different ways. Recent studies have shown that annexin exists not only as an intracellular protein in tumor cells, but also in different ways to be secret outside the cell as a “crosstalk” tool for tumor cells and tumor microenvironment, thus playing an important role in the development of tumors, such as participating in epithelial-mesenchymal transition, regulating immune cell behavior, promoting neovascularization and so on. The mechanism of annexin secretion in the form of extracellular vesicles and its specific role is still unclear. This paper summarizes the main role of annexin secreted into the extracellular space in the form of extracellular vesicles in tumorigenesis and drug resistance and analyzes its possible mechanism.


2020 ◽  
Vol 81 (1) ◽  
Author(s):  
Lina A. Aeshra ◽  
Maiada Moustafa ◽  
Mohammed I. Y. Elmallah ◽  
Said Abdelrahman Salih ◽  
Ibrahim Y. Abdel Kader

Sign in / Sign up

Export Citation Format

Share Document