scholarly journals Addition of a Viral Immunomodulatory Domain to Etanercept Generates a Bifunctional Chemokine and TNF Inhibitor

2019 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Alí Alejo ◽  
Carolina Sánchez ◽  
Sylvie Amu ◽  
Padraic G. Fallon ◽  
Antonio Alcamí

The inhibition of tumor necrosis factor (TNF) through the use of either antibodies or soluble receptors is a highly effective strategy for the clinical control of chronic inflammatory conditions such as rheumatoid arthritis. Different viruses have similarly exploited this concept by expressing a set of specifically tailored secreted TNF decoy receptors to block host inflammatory responses. Poxviruses have been shown to encode at least two distinct molecules, termed Cytokine response modifier D (CrmD) and CrmB, in which a TNF inhibitor is combined with a chemokine inhibitor on the same molecule. The ectromelia virus CrmD protein was found to be a critical determinant of virulence in vivo, being able to control local inflammation to allow further viral spread and the establishment of a lethal infection. Strikingly, both the TNF and the chemokine inhibitory domains are required for the full activity of CrmD, suggesting a model in which inhibition of TNF is supported by the concomitant blockade of a reduced set of chemokines. Inspired by this model, we reasoned that a similar strategy could be applied to modify the clinically used human TNF receptor (etanercept), producing a generation of novel, more effective therapeutic agents. Here we show the analysis of a set of fusion proteins derived from etanercept by addition of a viral chemokine-binding protein. A bifunctional inhibitor capable of binding to and blocking the activity of TNF as well as a set of chemokines is generated that is active in the prevention of arthritis in a murine disease model.

2016 ◽  
Vol 76 (3) ◽  
pp. 612-619 ◽  
Author(s):  
E A Ross ◽  
A J Naylor ◽  
J D O'Neil ◽  
T Crowley ◽  
M L Ridley ◽  
...  

ObjectivesTristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP.MethodsThe expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP.ResultsTTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation.ConclusionsThe phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.


2010 ◽  
Vol 109 (3) ◽  
pp. 758-767 ◽  
Author(s):  
Kristin N. Kornerup ◽  
Gary P. Salmon ◽  
Simon C. Pitchford ◽  
Wai L. Liu ◽  
Clive P. Page

Previous studies in our laboratory have shown that platelets are essential for the migration of eosinophils into the lungs of allergic mice, and that this is dependent on the functional expression of platelet P-selectin. We sought to investigate whether the same is true for nonallergic, acute inflammatory stimuli administered to distinct anatomic compartments. Neutrophil trafficking was induced in two models, namely zymosan-induced peritonitis and LPS-induced lung inflammation, and the platelet dependence of these responses investigated utilizing mice rendered thrombocytopenic. The relative contribution of selectins was also investigated. The results presented herein clearly show that platelet depletion (>90%) significantly inhibits neutrophil recruitment in both models. In addition, we show that P-selectin glycoprotein ligand-1, but not P-selectin, is essential for neutrophil recruitment in mice in vivo, thus suggesting the existence of different regulatory mechanisms for the recruitment of leukocyte subsets in response to allergic and nonallergic stimuli. Further studies in human blood demonstrate that low-dose prothrombotic and pro-inflammatory stimuli (CCL17 or CCL22) synergize to induce platelet and neutrophil activation, as well as the formation of platelet-neutrophil conjugates. We conclude that adhesion between platelets and neutrophils in vivo is an important event in acute inflammatory responses. Targeting this interaction may be a successful strategy for inflammatory conditions where current therapy fails to provide adequate treatment.


2018 ◽  
Vol 215 (4) ◽  
pp. 1035-1045 ◽  
Author(s):  
Sharmila Nair ◽  
Jeremy P. Huynh ◽  
Vicky Lampropoulou ◽  
Ekaterina Loginicheva ◽  
Ekaterina Esaulova ◽  
...  

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions, principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through its inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1−/− mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1−/−, but not WT, mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1fl/fl, Mrp8-Cre Irg1fl/fl, and CD11c-Cre Irg1fl/fl conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA sequencing analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, an Irg1 regulatory axis modulates inflammation to curtail Mtb-induced lung disease.


2011 ◽  
Vol 286 (12) ◽  
pp. 9956-9967 ◽  
Author(s):  
Catalina March ◽  
David Moranta ◽  
Verónica Regueiro ◽  
Enrique Llobet ◽  
Anna Tomás ◽  
...  

Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-ΔwcaK2ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-ΔwcaK2ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kangfeng Jiang ◽  
Weiqi Ye ◽  
Qian Bai ◽  
Jinyin Cai ◽  
Haichong Wu ◽  
...  

Staphylococcus aureus (S. aureus), a notorious pathogenic bacterium prevalent in the environment, causes a wide range of inflammatory diseases such as endometritis. Endometritis is an inflammatory disease in humans and mammals, which prolongs uterine involution and causes great economic losses. MiR-30a plays an importan trole in the process of inflammation; however, the regulatory role of miR-30a in endometritis is still unknown. Here, we first noticed that there was an increased level of miR-30a in uterine samples of cows with endometritis. And then, bovine endometrial epithelial (BEND) cells stimulated with the virulence factor lipoteichoic acid (LTA) from S. aureus were used as an in vitro endometritis model to explore the potential role of miR-30a in the pathogenesis of endometritis. Our data showed that the induction of the miR-30a expression is dependent on NF-κB activation, and its overexpression significantly decreased the levels of IL-1β and IL-6. Furthermore, we observed that the overexpression of miR-30a inhibited its translation by binding to 3 ′ − UTR of MyD88 mRNA, thus preventing the activation of Nox2 and NF-κB and ROS accumulation. Meanwhile, in vivo studies further revealed that upregulation of miR-30a using chemically synthesized agomirs alleviates the inflammatory conditions in an experimental mouse model of endometritis, as indicated by inhibition of ROS and NF-κB. Taken together, these findings highlight that miR-30a can attenuate LTA-elicited oxidative stress and inflammatory responses through the MyD88/Nox2/ROS/NF-κB pathway and may aid the future development of novel therapies for inflammatory diseases caused by S. aureus, including endometritis.


2011 ◽  
Vol 39 (5) ◽  
pp. 1455-1459 ◽  
Author(s):  
Steven J. Ressler ◽  
David R. Rowley

The present evaluates the key features of the WFDC1 [WAP (whey acidic protein) four disulfide core 1] gene that encodes ps20 (20 kDa prostate stromal protein), a member of the WAP family. ps20 was first characterized as a growth inhibitory activity that was secreted by fetal urogenital sinus mesenchymal cells. Purified ps20 exhibited several activities that centre on cell adhesion, migration and proliferation. The WFDC1 gene was cloned, contained seven exons, and was mapped to chromosome 16q24, suggesting that it may function as a tumour suppressor; however, direct evidence of this has not emerged. In vivo, ps20 stimulated angiogenesis, although expression of WFDC1/ps20 was down-regulated in the reactive stroma tumour microenvironment in prostate cancer. WFDC1 expression is differential in other cancers and inflammatory conditions. Recent studies point to a role in viral infectivity. Although mechanisms of action are not fully understood, WFDC1/ps20 is emerging as a secreted matricellular protein that probably affects response to micro-organisms and tissue repair homoeostasis.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ken-ichiro Inoue ◽  
Hirohisa Takano

Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hypersusceptible subjects, especially those with immune-related respiratory disorders using ourin vivoexperimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS)in vivoas a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthmain vivoas a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.


2006 ◽  
Vol 74 (2) ◽  
pp. 1196-1203 ◽  
Author(s):  
Amy L. Anderson ◽  
Romeo Sporici ◽  
John Lambris ◽  
David LaRosa ◽  
Arnold I. Levinson

ABSTRACT Staphylococcal protein A (SpA) is representative of a new class of antigens, the B-cell superantigens (SAgs). These antigens bind to the Fab regions of immunoglobulin molecules outside their complementarity-determining regions. SpA, the best-studied B-cell SAg, reacts with the Fabs of most VH3+ immunoglobulins, which are expressed on 30 to 60% of human peripheral B cells. Therefore, B-cell SAgs like SpA have great potential to elicit inflammatory responses in vivo. We previously reported that the interaction of SpA with VH3+ immunoglobulin molecules leads to activation of the complement cascade and produces a histologic pattern of inflammation in the skin of a rabbit indicative of immune complex injury. To elucidate the cellular and molecular events contributing to this type of unconventional immune complex-mediated inflammation, we established a mouse peritoneal Arthus reaction model. Mice treated intravenously with human polyclonal immunoglobulin G (IgG), followed by intraperitoneal injection of SpA, showed neutrophil influx into the peritoneal cavity with peak numbers appearing at 8 h. This inflammatory reaction was dependent on the interaction of SpA with VH3+ IgG. Mast cells, FcγRIII, complement components, and tumor necrosis factor alpha play obligatory roles, and the reaction is associated with the local release of the CXC chemokines macrophage inflammatory protein 2 and KC. The data provide further compelling evidence for the induction of immune complex-mediated injury by a B-cell SAg and highlight important factors contributing to the pathogenesis of this novel type of inflammatory reaction.


2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


Sign in / Sign up

Export Citation Format

Share Document