scholarly journals Sustainable Sandwich Composites Manufactured from Recycled Carbon Fibers, Flax Fibers/PP Skins, and Recycled PET Core

2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Qihong Jiang ◽  
Guiyong Chen ◽  
Abhideep Kumar ◽  
Andrew Mills ◽  
Krutarth Jani ◽  
...  

European union end of life vehicle directive mandates the use of more sustainable/recyclable materials in automotive industries. Thermoplastics matrix-based composites allow recyclability of composites at the end of life; however, their processing technology is more challenging than thermoset composites. Manufacturing process and mechanical testing of sustainable sandwich composite made from sustainable materials: flax, recycled carbon fiber, polypropylene, and recycled PET foam are presented in this article. High pressure compression molding with adhesive thermoplastic polymer film was used for manufacturing sandwich composite skin. The recycled PET foam core was integrated/joined with the skin using a thermoplastics adhesive film. A three-point bending test was conducted to compare the flexural properties. The results show that such sustainable sandwich composites will be an excellent material for truck side panel to operate in adverse wind/storm conditions. The sustainable sandwich composite can potentially be an excellent candidate for the fabrication of light-duty, lightweight, and low-cost engineering structures in automotive industry to meet the EU end of life requirements.

2016 ◽  
Vol 20 (3) ◽  
pp. 287-307 ◽  
Author(s):  
Pedram Sadeghian ◽  
Dimo Hristozov ◽  
Laura Wroblewski

In this study, the flexural behavior of sandwich composite beams made of fiber-reinforced polymer (FRP) skins and light-weight cores are studied. The focus is on the comparison of natural and synthetic fiber and core materials. Two types of fiber materials, namely glass and flax fibers, as well as two types of core materials, namely polypropylene honeycomb and cork, are considered. A total of 105 small-scale sandwich beam specimens (50 mm wide) were prepared and tested under four-point bending. Test parameters were fiber types (flax and glass fibers), core materials (cork ad honeycomb), skin layers (0, 1, and 2 layers), core thicknesses (6–25 mm), and beam spans (150 and 300 mm). The load–deflection behavior, peak load, initial stiffness, and failure mode of the specimens are evaluated. Moreover, the flexural stiffness, shear rigidity, and core shear modulus of the sandwich composites are computed based on the test results of the two spans. An analytical model is also implemented to compute the flexural stiffness, core shear strength, and skin normal stress of the sandwich composites. Overall, the natural fiber and cork materials showed a promising and comparable structural performance with their synthetic counterparts.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


Author(s):  
Cesim Atas ◽  
Alper Basmaci

AbstractThe damage behavior of the potting materials around a pinhole, being used in the mechanical joints of sandwich composites, is investigated experimentally. The sandwich composite panels used in the tests were manufactured by the vacuum-assisted resin infusion technique. Each of the top and bottom face sheets of the panels consisted of two woven E-glass/epoxy layers. As the core material, PVC foam (AIREX


2017 ◽  
Vol 61 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Albert ten Busschen

2018 ◽  
Vol 53 (10) ◽  
pp. 1347-1359 ◽  
Author(s):  
Erdem Selver ◽  
Gaye Kaya

This study aims to enhance the flexural properties of sandwich composites made from glass or carbon face and glass and carbon fibre Z-pin inserted extruted-polystyrene (XPS) foam cores. Carbon and glass pins were placed through XPS foams with two different column and row densities (15 and 30 mm). Results indicated that flexural loads, strength and modulus of glass/XPS and carbon/XPS sandwich composites significantly increased after inserting of glass and carbon rods. Core shear strengths and facing stresses of glass/XPS and carbon/XPS increased by increasing of carbon or glass rod densities. The rod type, rod density and face type of the sandwich composites are considered as significant parameters which affect the flexural behaviour of sandwich composites while using carbon rods enhanced flexural properties more than that of using glass rods due to better interfacial bonding.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 77
Author(s):  
Nurul Emi Nor Ain Mohammad ◽  
Aidah Jumahat ◽  
Mohamad Fashan Ghazali

This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.  


Author(s):  
Stéphane Pompidou ◽  
Marion Prinçaud ◽  
Nicolas Perry ◽  
Dimitri Leray

In order to decrease both energy consumption and CO2 emissions, the automotive, aeronautics and aerospace industries aim at making lighter vehicles. To achieve this, composite materials provide good opportunities, ensuring high material properties and free definition of geometry. As an example, for cold applications, the use of carbon fiber/thermoset composites is ever increasing, in spite of a high fiber price. But in a global and eco-friendly approach, the major limitation for their use remains their potential recyclability. Recycling a composite means having a recycling technology available, getting a dismantle solution and an access for the product, and disposing identification plus selection possibilities to the materials. Thus, carbon fibers recovery (i.e. recycling and re-processing) would both help design engineers to balance energy efficiency and cost, and open new opportunities for developing second-life composites, dedicated to the manufacture of medium or low loaded parts (non-structural in many cases). A first section presents an overview of composite recycling possibilities. Indeed, environmentally and economically, composite incineration is not attractive (even with an energetic valorization), let-alone burying. Reuse and recycling thus remain the two most interesting options. Aeronautics offers a high potential in terms of fiber deposit. In southwest France, composites recycling will increase in terms of quantity due to dismantling platforms Tarmac (dedicated to civil aircraft applications) and P2P (for the disassembly of ballistic weapons). In addition, from a technical point of view, and even if end-of-life solutions for composites still remain under development, solvolysis (i.e. water under supercritical conditions) already offers the opportunity to recover carbon fibers. The resulting recyclate retains up to 90 percent of the fiber’s mechanical properties. A second part will explore the recycling to design issue (i.e. how recycling processes have to balance the previous aspects of the end-of-life proposal). The recycler clearly becomes a new supplier in the carbon fiber lifecycle, by revalorizing wastes with alternatives to burning. Moreover, increasing carbon fiber shelf life reduces its product life impact. Finally, promoting carbon fiber end-of-life would ensure to link aeronautics, automotive, and leisure and sports industries; but one can create demand for recycled reinforcement, by packaging it in useful and attractive forms for those end-users (e.g. pseudo-continuous fiber, felt, strips, bands, patches, etc.). These sections will be enlightened by several examples from collaborations between I2M and local industries.


2021 ◽  
Vol 888 ◽  
pp. 15-21
Author(s):  
Ivelina Ivanova ◽  
Jules Assih ◽  
Dimitar Dontchev

This research aims at studying the mechanical properties of industrial hemp fibers and promoting their use as a reinforcing composite material for strengthening of civil engineering structures. Natural hemp fibers are of great interest due to the following advantages they have: low cost, high strength-to-weight ratio, low density and non-corrosive properties. The use of plant fiber composite materials has increased significantly in recent years because of the negative reduction impact on the environment. For example, the tendency to use renewable resources and their possibility for recycling. They cause fewer health and environmental problems than synthetic fibers. Natural fibers, in addition to environmental aspects, have advantages such as low densities, i.e. have low weight, interesting mechanical properties comparable to those of synthetic fiber materials, and last but not least, low cost. Composites based on natural plant fibers can be used to reinforce or repair reinforced concrete structures, as shown by research on flax fiber composites. These concretes specimens strengthened with biocomposite materials have very good resistance to bending and significantly increase the rigidity of the structure. The results show that the hemp fiber reinforcement has significant effects on the strengthening and increase in flexural strength from 8% to 35 %.


2021 ◽  
Author(s):  
Quankun Li ◽  
Zengde Shao ◽  
Mingfu Liao

Abstract Because of some advantages such as low cost, detachability and reusability, bolted joints are widely applied in various open beam-like engineering structures like steel beams and train rails and closed ring-type engineering structures like steel frames and oil pipelines to keep different structural components together. However, bolted engineering structures often encounter vibration-induced joint faults like self-loosening, crack, leakage and corrosion since they are generally subjected to external dynamic loads caused by vibration environments. Joint damages would seriously affect structures’ reliability and durability, and increase maintenance costs. Therefore, fault detection of bolted engineering structures is very important and necessary. For beam-like and ring-type engineering structures with single excitation and multiple damaged bolted joints, various methods monitoring changes in nonlinear structural features have been developed. To avoid the use of structural features from benchmark structures for reference during the derivation of damage indicators, a novel vibration-based fault detection approach utilizing features from damaged structures only is proposed in this study. In the new method, the dynamic model of bolted engineering structures is simplified as a general MDOF model with nonlinear elements simulating nonlinear bolt loosening faults. By changing the value of related mass, three similar equations from the damaged structure are used to form one matrix, and then the singularity of matrix is used to detect the existence and position of faults. Results from simulations on the beam-like and ring-type models with multiple damages demonstrate that the proposed approach could be an effective tool to estimate the state of bolted engineering structures.


2020 ◽  
Vol 12 (2) ◽  
pp. 641 ◽  
Author(s):  
Omid Zabihi ◽  
Mojtaba Ahmadi ◽  
Chao Liu ◽  
Roya Mahmoodi ◽  
Quanxiang Li ◽  
...  

For practical applications, both environmental and economic aspects are highly required to consider in the development of recycling of fibre reinforced polymers (FRPs) encountering their end-of-life. Here, a sustainable, low cost, and efficient approach for the recycling of the glass fibre (GF) from GF reinforced epoxy polymer (GFRP) waste is introduced, based on a microwave-assisted chemical oxidation method. It was found that in a one-step process using microwave irradiation, a mixture of hydrogen peroxide (H2O2) as a green oxidiser and tartaric acid (TA) as a natural organic acid could be used to decompose the epoxy matrix of a waste GFRP up to 90% yield. The recycled GFs with ~92.7% tensile strength, ~99.0% Young’s modulus, and ~96.2% strain-to-failure retentions were obtained when compared to virgin GFs (VGFs). This short microwave irradiation time using these green and sustainable recycling solvents makes this a significantly low energy consumption approach for the recycling of end-of-life GFRPs.


Sign in / Sign up

Export Citation Format

Share Document