Flexural properties of sandwich composite laminates reinforced with glass and carbon Z-pins

2018 ◽  
Vol 53 (10) ◽  
pp. 1347-1359 ◽  
Author(s):  
Erdem Selver ◽  
Gaye Kaya

This study aims to enhance the flexural properties of sandwich composites made from glass or carbon face and glass and carbon fibre Z-pin inserted extruted-polystyrene (XPS) foam cores. Carbon and glass pins were placed through XPS foams with two different column and row densities (15 and 30 mm). Results indicated that flexural loads, strength and modulus of glass/XPS and carbon/XPS sandwich composites significantly increased after inserting of glass and carbon rods. Core shear strengths and facing stresses of glass/XPS and carbon/XPS increased by increasing of carbon or glass rod densities. The rod type, rod density and face type of the sandwich composites are considered as significant parameters which affect the flexural behaviour of sandwich composites while using carbon rods enhanced flexural properties more than that of using glass rods due to better interfacial bonding.

2019 ◽  
Vol 49 (6) ◽  
pp. 809-832
Author(s):  
Erdem Selver

This paper attempts to show the effect of silica nanoparticles and polyethylene glycol mixture (shear thickening fluids) on tensile and flexural properties (3-point bending) of glass and carbon fibre-reinforced thermoset composite laminates. The shear thickening fluids were prepared by combination of silica nanoparticles and polyethylene glycol using various silica contents (10–20 wt%). A viscometer was used to evaluate the shear thickening characteristics and viscosity of shear thickening fluids increased by increasing the silica content. Shear thickening fluids were impregnated on the host of glass and carbon fabrics and subsequently converted to composite laminates using vacuum infusion method with an epoxy matrix. It was found that shear thickening fluids-treated carbon and glass fabric composites exhibited up to 10% and 12% higher tensile strength than neat composites whilst the tensile modulus increased about 24%. Shear thickening fluids-treated fabric composites exhibited slower damage propagation compared to brittle nature of untreated fabric composites. However, lower flexural strength with higher energy absorption (up to 27%) were obtained after using shear thickening fluids for both carbon and glass fibre composites.


2013 ◽  
Vol 700 ◽  
pp. 107-110
Author(s):  
Eng Har Lim ◽  
Kim Pickering

In this paper, carbon fibre fabric reinforced polymeric composites with the capability of self-healing were studied. These fabric-composite laminates were fabricated by hand lay-up of plain weave (PW) carbon fibre fabrics impregnated with polymer blends of epoxy resin and thermoplastic healing agent. Laminates containing different amounts of healing agent (0, 10wt% and 20wt% by weight of epoxy) were evaluated by tensile and three-point flexural tests according to the ASTM D3039/D3039M and D790, respectively. Aside of the potential for self-healing, benefits were found in terms of tensile and flexural properties. Overall, tensile properties were improved with addition of thermoplastic healing agent; the highest tensile strength and failure strain were obtained with the highest healing agent amount (20wt%) whilst the maximum tensile modulus was obtained at 10wt%. In general, flexural properties were also improved except flexural strain; the highest flexural strength and modulus were determined at 10wt%.


2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

Author(s):  
Cesim Atas ◽  
Alper Basmaci

AbstractThe damage behavior of the potting materials around a pinhole, being used in the mechanical joints of sandwich composites, is investigated experimentally. The sandwich composite panels used in the tests were manufactured by the vacuum-assisted resin infusion technique. Each of the top and bottom face sheets of the panels consisted of two woven E-glass/epoxy layers. As the core material, PVC foam (AIREX


2018 ◽  
Vol 7 (3.11) ◽  
pp. 77
Author(s):  
Nurul Emi Nor Ain Mohammad ◽  
Aidah Jumahat ◽  
Mohamad Fashan Ghazali

This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.  


2019 ◽  
Vol 127 ◽  
pp. 129-134 ◽  
Author(s):  
Jan Luedtke ◽  
Marc Gaugler ◽  
Warren J. Grigsby ◽  
Andreas Krause

Author(s):  
Dhiraj Kumar ◽  
Kalyan Kumar Singh

Laser machining of carbon fibre reinforced polymer composites is a challenging task due to a significant difference between physical and thermal properties of the constituent materials, i.e. polymer matrix and carbon fibres. This results in extended heat-affected zone (HAZ), taper kerf and poor surface finishing. This paper focuses on an investigation, attempting to minimise the divergence in the decomposition temperature of carbon fibres and epoxy resin by adding multi-walled carbon nanotubes in polymer matrix as a secondary reinforcement. High thermal conductivity of multi-walled carbon nanotubes increases the thermal diffusivity of polymer matrix, which in turn reduces the matrix recession. In addition, laser power and scan speed was also considered as an input parameter and their influence on output responses such as HAZ, taper angle and surface roughness has been studied. To analyse the effect of multi-walled carbon nanotubes on the resultant thermal damage, an innovative technique, i.e. scanning acoustic microscopy was used. This technique provides a ply-by-ply damage analysis. C-scans of the top and bottom surface of the machined holes in the composite were also carried out. Further, micrographs of the holes were taken to analyse the quality of the holes using field-emission scanning electron microscope. The obtained results indicated that HAZ, taper angle and surface roughness of holes decreased by ∼30%, ∼47% and ∼43%, respectively, with 1.5 wt% multi-walled carbon nanotubes doped carbon fibre reinforced polymer laminates, when compared with the results obtained from experiments with neat carbon fibre reinforced polymer composite laminates.


Author(s):  
A. Sarhadi ◽  
M. Tahani ◽  
F. Kolahan ◽  
M. Sarhadi

Multi-objective optimal design of sandwich composite laminates consisting of high stiffness and expensive surface layers and low-stiffness and inexpensive core layer is addressed in this paper. The object is to determine ply angles and number of surface layers and core thickness in such way that natural frequency is maximized with minimal material cost and weight. A simulated annealing algorithm with finite element method is used for simultaneous cost and weight minimization and frequency maximization. The proposed procedure is applied to Graphite-Epoxy/Glass-Epoxy and Graphite-epoxy/Aluminum sandwich laminates and results are obtained for various boundary conditions and aspect ratios. Results show that this technique is useful in designing of effective, competitive and light composite structures.


Sign in / Sign up

Export Citation Format

Share Document