scholarly journals Advances in Fabricating the Electrospun Biopolymer-Based Biomaterials

2021 ◽  
Vol 12 (2) ◽  
pp. 26
Author(s):  
Sebastian Wilk ◽  
Aleksandra Benko

Biopolymers formed into a fibrous morphology through electrospinning are of increasing interest in the field of biomedicine due to their intrinsic biocompatibility and biodegradability and their ability to be biomimetic to various fibrous structures present in animal tissues. However, their mechanical properties are often unsatisfactory and their processing may be troublesome. Thus, extensive research interest is focused on improving these qualities. This review article presents the selection of the recent advances in techniques aimed to improve the electrospinnability of various biopolymers (polysaccharides, polynucleotides, peptides, and phospholipids). The electrospinning of single materials, and the variety of co-polymers, with and without additives, is covered. Additionally, various crosslinking strategies are presented. Examples of cytocompatibility, biocompatibility, and antimicrobial properties are analyzed. Special attention is given to whey protein isolate as an example of a novel, promising, green material with good potential in the field of biomedicine. This review ends with a brief summary and outlook for the biomedical applicability of electrospinnable biopolymers.

2020 ◽  
Vol 26 (8) ◽  
pp. 666-675
Author(s):  
Zahra Moradi

Considering environmental pollution caused by the non-biodegradable polymers used in food packaging, developing and enhancing the properties of biodegradable films seem to be necessary. For this aim, in the present study, kefiran-whey protein isolate bionanocomposite films were prepared and the impact of different concentrations (1, 3 and 5% w/w) of Al2O3 (alumina) nanoparticles on their physical, morphological, thermal and mechanical properties was studied. Based on the obtained results, an increase in the nanoparticles content led to a significant decrease (p < 0.05) in the water vapor permeability, moisture absorption, moisture content, and water solubility. Scanning electron microscope images showed a homogeneous structure, confirming the good dispersion of alumina nanoparticles with smooth surface up to concentration of 3%. In addition, both thermal stability and mechanical properties of the films were improved by the increased concentrations of alumina. The results of X-ray diffraction indicated that the intensity of the crystalline peaks of film increased with the addition of Al2O3 to kefiran-whey protein isolate matrix. By considering all results, the concentration of 3% was proposed as the appropriate concentration of Al2O3 for the nano-reinforcement of kefiran-whey protein isolate bionanocomposites.


2020 ◽  
Vol 21 (15) ◽  
pp. 5544
Author(s):  
Rebecca Rabe ◽  
Ute Hempel ◽  
Laurine Martocq ◽  
Julia K. Keppler ◽  
Jenny Aveyard ◽  
...  

To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI’s main component, β-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.


2015 ◽  
Vol 48 ◽  
pp. 179-188 ◽  
Author(s):  
Viviane M. Azevedo ◽  
Marali V. Dias ◽  
Soraia V. Borges ◽  
Ana Letícia R. Costa ◽  
Eric Keven Silva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Maryam Gohargani ◽  
Hannan Lashkari ◽  
Alireza Shirazinejad

In our research, a composite film of whey protein isolate (WPI)/chitosan incorporated with TiO2 nanoparticles (NPs) and essential oil of Zataria multiflora (ZEO) was developed. The resulting composite films were evaluated by FTIR, SEM, and XRD, and also the physicochemical characteristics including color, mechanical properties, swelling ratio, and water vapor permeability (WVP) were studied. SEM graphs exhibited that the samples had a uniform and homogeneous structure where TiO2 NPs and ZEO were well dispersed. FTIR and XRD findings also show that the hydrogen bonds and hydrophobic interactions are the main interactions between the composite WPI/chitosan and TiO2. The crystalline nature of the composite samples increased with the increase of NP content. Nevertheless, ZEO had an insignificant effect on the functional groups and the crystallinity of composite samples. The film visual characterization revealed that, by adding and increasing the TiO2 and TiO2-ZEO, sample lightness and opacity significantly increased. Additions of TiO2 remarkably (p<0.05) improved the water vapor and mechanical properties of composite samples, although the loading of ZEO, regardless of TiO2 incorporation, led to a considerable decrement of these properties. Furthermore, composite films containing ZEO combined with 2% of TiO2 compared with 1% of NPs blended with ZEO had strong antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes. Generally, the findings proposed that the addition of TiO2 reinforces the properties of composite films with a synergistic effect of ZEO loading on the antibacterial ability, by which the resulting biodegradable composite samples can be used as a food active packaging material.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 401
Author(s):  
Maria-Ioana Socaciu ◽  
Melinda Fogarasi ◽  
Elemér Lajos Simon ◽  
Cristina Anamaria Semeniuc ◽  
Sonia Ancuţa Socaci ◽  
...  

The efficiency of some films prepared from heat-denatured whey protein isolate solutions on the quality and shelf-life of brook trout samples during storage at 4 °C was studied in this research (WPIf-a film based on whey protein isolate and WPIf+2.5%TEO-a film based on whey protein isolate incorporated with 2.5% tarragon essential oil). The control and covered fish samples were periodically assessed (at 3 days) over 15 days of storage for the physicochemical (pH; EC, electrical conductivity; TVB-N, total volatile basic nitrogen; TBARS, thiobarbituric acid reactive substances; color), microbiological (TVC, total viable count; PTC, psychrotrophic count; LAB, lactic acid bacteria; H2S-producing bacteria), and sensory properties (color discoloration; odor; overall acceptability). The WPIf+2.5%TEO has proven enhanced quality preservation effects compared to WPIf by showing lower values for physicochemical parameters, lower microbial loads, and higher sensory scores in the fish sample. All these effects have led to an extension of the sample’s shelf-life. In conclusion, the tarragon essential oil has conferred antioxidant and antimicrobial properties to the film. Thus, the WPIf+2.5%TEO could be a promising material for the packaging of fresh brook trout during refrigerated storage.


Sign in / Sign up

Export Citation Format

Share Document